The rapid human-induced increase in atmospheric carbon dioxide (CO2) is associated not only with increasing global temperatures, but also higher rates of absorption of CO2 by the ocean that results in complex chemical reactions ultimately reducing seawater pH and increasing the ocean’s acidity. This process is termed ocean acidification, and it is occurring globally at unprecedented rates. In the coastal zone, acidification is influenced by additional drivers including nutrient loading, productivity-respiration cycles, freshwater inputs, and other coastal processes. Coastal acidification can be highly variable and episodic both spatially and temporally.
Acidification can impact several important processes in marine organisms including rates of calcification (building external structures), metabolic physiology, reproduction and development, and indirect impacts through qualitative and/or quantitative changes in food source. Through laboratory and field experiments, we investigate organismal response to individual and synergistic changes in temperature and seawater pH.
We also utilize ocean observing technologies (autonomous underwater vehicles or AUVs, sensor development, ship sampling, moorings) to determine natural environmental variability near organism habitats that will provide a framework to better study organism response, design more realistic experiments, and understand potential vulnerability of important economic living marine resources. Through academic-industry partnerships, we developed and integrated deep-sea pH sensors into AUVs called a Slocum gliders. These gliders can be deployed in a variety of ocean systems to track changes in the carbonate system over time and space, identify and quantify drivers of the coastal carbonate system, and aid in the development and improvement of biogeochemical and forecast models.