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Lagrangian coherent structures influence
the spatial structure of marine food webs

Check for updates
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The patchy distribution of prey in marine environments has a large effect on upper trophic level
foraging strategies and distributions.While currents candisperse or concentrate low-motility plankton
into patches that reflect the dynamic fluid environments they inhabit, it remains unclear whether
surface flows affect motile zooplankton. Here, we used an in-situ optical dataset to detect
phytoplankton patches, active acoustics to observe krill, and GPS-tagged penguins to observe three
levels of the food web. These data allowed us to investigate whether the local food web overlaps with
small-scale surface transport patterns as evidence that dynamic flows structure marine food webs. In
Palmer Deep Canyon, Antarctica, we deployed High Frequency radars to measure hourly ocean
surface currents, which were subsequently applied to estimate attractive Lagrangian Coherent
Structures.We found that phytoplankton patches, Antarctic krill (Euphausia superba), Adélie penguins
(Pygoscelis adeliae) and gentoo penguins (Pygoscelis papua) were preferentially located in attracting
Lagrangian Coherent Structure features. These results provide evidence that Lagrangian Coherent
Structures act as hotspots for prey and associated foraging predators, thus spatially focusing the food
web. Results highlight the role of small-scale currents in food web focusing and the importance of
transport features in maintaining the Palmer Deep Canyon ecosystem.

Distributions of planktonic and nektonic marine organisms are con-
tinuously shaped by the dynamic ocean environments in which they
reside and are typically patchy in space and time. Phytoplankton and
zooplankton are both known to form discrete patches1,2, with predators
that seek out these patches of prey3, which leads to a formof spatial control
on the ecosystem known as food web focusing4, where small scale fluid
flows (hours-days and 1–100 km) structure the relationship between
different trophic levels.Here, we are using the term “foodweb focusing” to
describe transient and spatially variable prey patches, as opposed to prey
aggregations associated with fixed spatial structures like seamounts4.
Understanding themechanisms that control “patchiness” seen in primary
producers, primary consumers, and their predators requires integrating
environmental observations of physical processes and community
structure at relevant temporal and spatial scales5,6. These interactions
between marine organisms and physical ocean processes are crucial to
understanding their distribution within and reliance on the dynamic
ocean habitat in which they reside.

Low-motility plankton with low and intermediate Reynolds numbers
(Re ~10−2–103)7, such as phytoplankton and zooplankton, are transported
by ocean currents8. (Here, Reynolds numbers (Re) refer to how the fluid
flows around the animals rather than how the fluid flows on its own).
Foraging species with high Reynolds numbers (Re ~106)7 and greater
mobility can employ various foraging strategies to seek out their zoo-
plankton prey, which swim more slowly and are less able to move inde-
pendently of ocean currents. The transport of low-motility plankton is
particularly noticeable in areas with strong currents, often associated with
features such as ocean fronts and eddies9. In order to understand distribu-
tions of phytoplankton, zooplankton, and top predators, we must investi-
gate patterns in ocean transport.

Patterns in ocean transport can be elucidated through particle release
experiments within observed ocean velocity fields. By integrating over
Lagrangian particle trajectories, attracting structures are quantified within
evolving velocity fields using an analysis known as Lagrangian Coherent
Structures (LCS)10. Several types of LCS exist with different definitions of
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“attraction” and “repulsion” to quantify the strengthof transport features. In
this study, we use Finite Time Lyapunov Exponents (FTLE) as a metric to
identify attractingLCS, and test if these attractingLCSare acting as ahotspot
for low-motility plankton. FTLE were chosen as they provide flexible
integration time, allowing for the identification of ocean features at the scale
of interest, and have been shown to identify transport features associated
with increased phytoplankton patch presence in our study area11. LCS can
quantify transport patterns in ocean velocities that cannot be seen by
studying Eulerian velocity fields alone, allowing for the investigation of the
role of transport in food web focusing.

LCS have been shown to overlap with bioactivity on different levels of
the marine food web, shaping large phytoplankton blooms12–15, correlating
with the presence ofmiddle trophic levels (fishes)16, and appearing along the
tracks of top predators17,18. Much of this previous work has been conducted
on larger, geostrophic currents characteristic of open ocean (pelagic) eco-
systems.On these scales, satellite-observed ocean color is often used to track
the evolutionof large phytoplanktonpatchesandGlobal Positioning System
(GPS) tags are used to track movements of large marine animals in relation
to LCS calculated from satellite altimetry12 or long range radars14. However,
predator and prey patches likely interact at much smaller scales than
measured by these systems.

Distributions of zooplankton affect prey availability for many higher
trophic level predators6 including whales19 and commercially important
fishes20. Therefore, a major interest in marine spatial ecology has been
understanding and quantifying the factors that affect the preyscape of a
marine ecosystem. While both phytoplankton and predators have been
associated with attractive LCS features, the relationship between zoo-
plankton andLCSaremoredifficult toobtain as they require in-situacoustic
measurements and/or net tows, and the factors that influence their dis-
tribution can be driven by both zooplankton behavior and advection.

Many of the studies linking LCS to top predators assume that, similarly
to phytoplankton, zooplankton are also concentrated by attractive LCS
features, though these assumptions are typically made without coincident
zooplankton measurements. The few studies that have linked zooplankton

toLCSwere conductedover relatively large scales usingdata frommesoscale
ocean model output21,22 and long-range (low frequency) radars23. These
findings suggest links between zooplankton biomass and the presence of
LCS at scales of days to weeks and tens of kilometers. Other studies have
associated zooplankton distributions with mesoscale eddy kinetic energy24,
tidal cycles phases25,26, and wind events25,27 suggesting connections between
ocean dynamics and zooplankton swarms. Larger top predators such as
whales have also been shown to select for LCS-identified prey concentrating
features over larger scales23. However, predators likely seek prey patches on
much smaller scales28,29, meaning these coarser-scale associations between
LCS and predators could be averages of finer scale processes. Using an
Antarctic submarine canyon as our natural laboratory, we resolved the food
web at scales of hours to days across spatial scales of hundreds of meters to
kilometers and observed transport features experienced by near-shore
patches of phytoplankton, zooplankton and associated predators. To our
knowledge, the following study is the first, to the best of our knowledge, to
include concurrent high-resolution observations of zooplankton, phyto-
plankton and upper trophic predators in relation to LCS-identified ocean
features.

For this study, we focus on the local food web of Palmer Deep Canyon
along the Western Antarctic Peninsula (WAP). Here, Antarctic krill
(Euphausia superba, hereafter referred to as krill) serve as a keystone species
and a major food source for marine predators including whales, seals, and
penguins27,30–34. Local Adélie (Pygoscelis adeliae) and gentoo (Pygoscelis
papua) penguins are both central place foragers, meaning they return to a
nest after each foraging trip, with overlapping foraging areas centered over
Palmer Deep Canyon (Fig. 1b). Penguin populations in Palmer Deep
Canyon have persisted for hundreds of years35–37, their diets dependent at
least in part on the elevated biomass of krill38 that persists here in relation to
neighboring regions37,39,40, establishing PalmerDeepCanyon as a “biological
hotspot”. Consequently, Palmer Deep Canyon’s ecosystem hinges on the
availability of krill as the trophic link between phytoplankton at the base of
the food web and higher predators41. In this study, we investigate current-
driven controls on the distributions of phytoplankton patches and krill

Fig. 1 | Ocean observatory around Palmer Deep Canyon. a Palmer Deep Canyon
study region with the location of the three High Frequency Radars shown with
polygons and the area of LCS results contoured. Within the LCS footprint is the
transect line of the active acoustic survey used to detect krill and optical survey used
to detect phytoplankton patches. Canyon bathymetry is contoured in 50 m isobaths.
b Penguin positions observed with GPS tags for Adélie (red squares) and gentoo
(blue circles) penguins. Convex hulls of simulated Adélie and gentoo penguins are
shown in red and blue respectively, the smallest convex polygon that contains the set

of points produced by the simulated penguin tracks. Penguin nests are shown in
black polygons. Adélie breeding colonies are located on Humble Island, Torgerson
Island, and Biscoe Island, and gentoo breeding colonies on Biscoe Island. Transect
line for the surveys that observed krill swarms and phytoplankton patches is shown
with a solid black line. Canyon bathymetry is shown in contours of 50 m isobaths.
Note that the seemingly strait penguin tracks are likely penguins returning to their
nests after satiation.
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swarms at the scales of penguin foraging through the use of amulti-platform
ocean observing system (Fig. 1a). Integration of multiple observing plat-
forms provides the rare opportunity to analyze the overlapping physical
processes and trophic interactions on time and space scales relevant to
understanding the physical mechanisms that concentrate high density
patches of prey that predators use to efficiently forage.

When integrating both biological and physical observations of an
ecosystem, it is important to investigate them at the appropriate space and
time scales42. PalmerDeepCanyon is a coastal system, characterized by sub-
mesoscale ocean currents, strong tidal influences, and short (2–7 days)
surface residence times43. Similarly, phytoplankton patches have been
shown to move through this system quickly (6 h decorrelation)11, and most
penguin foraging trips are between 6 and 24 h44. Previous work has estab-
lished Palmer Deep Canyon as a fast-moving oceanic habitat, characterized
by dynamic physical conditions and a similarly variable biological ecosys-
tem. In this study, we determine if the distribution of krill and foraging
penguins at these shorter time and space scales show similar association
with LCS-identified transport features as previously observed with
phytoplankton11, suggesting small-scale and current-driven controls on
food web focusing. The present study maps each level of the food web onto
dynamic ocean currents at resolutions that resolve interactions between
near-shore creatures and complex coastal flow, providing a unique
opportunity to deepen our understanding of potential small-scale physical
mechanisms of spatial ecology.

Results
Dynamic feature mapping with Lagrangian Coherent Structures
In this study we used a high-resolution High Frequency Radar (HFR)
network to calculate attracting FTLE, projected at the temporal and spatial
resolution of inputted HFR data (1 h, 1 km). FTLE is a metric used to
characterize the Lagrangian structure in fluid flows. It measures the rate of
separation of initially close particles over a finite time interval, providing
insights into the stability and chaotic behavior of the flow (see section 5.7 for
details). FTLEmapswere calculated eachhourwitha 1 kmspatial resolution
(Fig. 2 and Supplementary Movie 1), the same spatial and temporal reso-
lution as theHFRvelocityfield data.Higher values of LCS indicated ahigher
influence on the attraction of nearby drifting particles. This analysis pro-
duced a time resolved 2-dimensional field of attracting features.

Phytoplankton patches occuring in transport features
Phytoplankton patches were observed with an ACROBAT, a towed instru-
ment that undulates between the surface and ~50m depth (see Section 5.3
for details), outfitted with a Wetlabs Ecopuck optical sensor (chlorophyll-a,
CDOM fluorescence, and optical backscatter at 700 nm) and a fast-sampling
(16Hz) Seabird 43 FastCAT CTD (conductivity, temperature, and pressure)
following transect lines within the HFR footprint (Fig. 1a). MLD was cal-
culated as the depth of maximum buoyancy frequency for each profile11,45

using data collected via the towed ACROBAT. Phytoplankton patches were
determined followingmethods in Veatch et al.11 as profiles with an integrated
mixed layer backscatter greater than a threshold, and re-analyzed in this
study for direct comparison with krill and penguin foraging observations
(Section 5.3, Supplementary Fig. 2).

Previous results found phytoplankton patches were associated with
higher FTLE values (indicative of stronger attracting features) than a null
model11. The distribution of FTLE values associated with phytoplankton
patches are shifted towards higher FTLE values, peaking around 0.3 hr−1

while the distribution of FTLE values associated with randomized phyto-
plankton patches (null model) were more symmetrical, peaking around
0.22 hr−1 (Fig. 3). Randomized phytoplankton patches were created by
generating survey transects in random locations and associating them with
LCS (see section 5.6 for details). The distribution of FTLE values associated
withobservedphytoplanktonpatcheswere significantlyhigher than thoseof
randomized phytoplankton patches (Fig. 3a), according to a one-sided
Kolmogorov-Smirnov (KS) test (p = 0.01187) which tests whether one
sample distribution tends to have greater values than the other. Results were

the same when the null model was confined to the area of the observed
transect (see section 5.6 for details) passing a one-sided KS test
(p = 2.54e–11).

Krill swarms occuring in transport features
Krill swarms (Fig. 4) were concurrently mapped using active acoustics
during small boat surveyswithin theHFR footprint (Fig. 1a) during daytime
surveys. The small boat was equippedwith a hull-mounted EK80. Krill were
acoustically detected and parameterized followingmethods previously used
in Palmer Deep Canyon28,46–48. Mixed layer depth (MLD) was also observed
using a CTD aboard a towed ACROBAT instrument (see Sections 3.2, 5.3).
Of the 1749 total krill swarmsdetected, 687 (~39%)were observed above the
MLD. A null model representing random distribution of krill aggregations
across the survey area was created to compare to observations.

Observed krill swarms as well as randomized krill swarms from a
null model were matched in space and time with FTLE. The density
distributions of FTLE for krill swarms (above the MLD, below the MLD,
and total) are skewed towards higher FTLE with the peak around
0.35 hr−1 for krill above the MLD, 0.33 hr−1 for krill below the MLD, and
0.35 hr−1 for all krill swarms (Fig. 3b). In contrast, the density distribu-
tions of FTLE for randomized krill swarms is relatively symmetrical in
shape, peaking at a lower value around 0.25 hr−1. A KS test between
density distributions of FTLE for observed and randomized krill swarms
showed that the distribution of true krill swarms is skewed toward higher
FTLE values compared to randomized krill swarms. There was a sig-
nificant difference between total krill swarms and randomized krill
swarms (p = 9.57e–14). This was also true for krill swarms both above
and below the MLD (p = 0.0028 and p = 5.56e–12, respectively) (Fig. 3b).
When all krill swarms were compared to null model confined to the area
of the observed transect (see section 5.6 for details) results were the same,
passing a one-sided KS test (p = 7.16e–39).

Adélie and gentoo penguins selecting for transport features
Penguin diving locations, tracked using Fastloc GPS archival tags, showed
preference for higher values of FTLE. Similar to the krill swarms, density
distributions of FTLE associated with observed Adélie penguin diving
locations indicated that Adélie penguins tended to forage in regions with
higher FTLE compared to the simulated Adélie penguin tracks (KS test,
p = 2.7e–5). Adélie locations with dives less than 10m deep (KS test,
p = 2.2e–15) and locations with dives greater than 10m deep (KS test,
p = 0.0017) both showed higher density distributions of FTLE compared to
null models, with 10m representing the average MLD calculated from the
towed ACROBAT instrument. Like Adélie penguins, the density distribu-
tions of FTLE associatedwith observed gentoo penguin diving locationswas
shifted towards higher FTLE values compared to randomized gentoo
penguin foraging locations (KS test, p < 1.66e–15). Observed gentoo pen-
guin foraging locations were also associated with higher FTLE values
compared to randomized foraging locations for dives with maximum
depths above and below 10m (p < 1.15e–13 and p < 9.6e–12, respectively).
The density distributions of FTLE for Adélie and gentoo penguins are
shifted towards higher FTLE (Fig. 3c, d). In contrast, the density distribu-
tions of FTLE for simulated Adélie and gentoo penguins are relatively
symmetrical in shape. For all three of these comparisons (all dives, dives
shallower than 10m, and divers deeper than 10m), we systematically
removed one penguin from the analysis and recomputed theKS test, as each
sampling group wasΟ10 penguins. The resulting distributions showed that
no individual penguin was driving the shift of Adélie or gentoo penguins
toward higher FTLE values (see the grey shaded area in Fig. 3c, d).

Discussion
In this study, we observed that food web focusing by small-scale currents
shapes the spatial ecology of a coastal marine food web at the patch scale of
foraging (hours and 100 s of meters to kilometers). Our results show that
phytoplankton, krill, and penguins are found in higher attracting FTLE
features (LCS), suggesting aggregation of plankton from horizontal ocean
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transport is an important factor in the spatial ecology of Palmer Deep
Canyon and providing the first evidence, to the best of our knowledge, of
LCS selection at these scales across primary producers, primary consumers,
and predators.

Interactions with ocean transport from each trophic level
The three trophic levels tested in this study span a wide range of Reynolds
numbers with significant differences in their behavior and in the depen-
dence of their movement on ocean currents. The passive particles used in

Fig. 3 | Density distributions of FTLE. a Density
distributions of FTLE associated with observed
phytoplankton patches (black line) and randomized
phytoplankton patches (grey line) previously pub-
lished in Veatch et al.11. Phytoplankton patch FTLE
value density distribution were skewed toward
higher values compared to randomized phyto-
plankton patches (KS test, p = 0.01187). b Density
distributions of FTLE associated with observed krill
swarms (solid line) above (dashed line) and below
(dotted line) themixed layer depth. All three of these
distributions are skewed toward higher FTLE values
than randomized krill swarms (grey line) (KS test,
p = 9.57e−14, 0.0028, 5.56e−12). c Adélie and (d)
gentoo tagged penguin FTLE values shown in solid
line and randomized penguin FTLE values with
dashed line. Grey regions represent the distributions
of either Adélie or gentoo penguins if individual
birds were systematically excluded from the analy-
sis. This was done to determine if an individual bird
was driving the results. Both Adélie and gentoo
FTLE distributions were skewed toward higher
values compared to FTLE values with simulated
penguins (KS test, p = 2.7e–5, p < 1.66e−15). All
curves are kernel density estimates computed with a
density function within the statistic package of R86,
with the bandwidth of the kernel smoother set to
0.03. These density curves visualize the frequency of
the underlying data.

Fig. 2 | Example FTLE results calculated from
High Frequency Radar observed surface currents.
Locations of three HFR stations are denoted with
polygons. FTLE results on January 21st 2020 at 16:00
GMT are shown in greyscale with higher FTLE
values corresponding with stronger attracting ocean
features.
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LCS calculationsmost closely approximate the non-motile characteristics of
phytoplankton at the scales of this study (Re ~10−2, estimated from length
scale7). The correlation between phytoplankton patches and LCS, their
immobility, and their slow growth rates compared to local surface residence
time43 suggests that these patches are formed through horizontal ocean
transport.

Unlike the largely passive phytoplankton cells, krill exhibit movement
behavior relative to local ocean currents (Re ~103) and migrate vertically
based on the sun angle49, which means they can both be transported by
ocean currents and swim somewhat independently of them. Our analysis
used only passive particles and current velocities at the surface, yet sur-
prisingly, high FTLE values indicated that krill both above and below the
MLD were preferentially associated with surface concentrating features.
Dynamics below the mixed layer are outside the scope of this study, but we
can speculatewhy krill below theMLDwould have higher FTLE values than
a nullmodel using surface particles. Krill below theMLDmay have recently
migrated down from within the mixed layer, and have not yet become
decorrelated with surface currents. It is also possible that the velocity field
below theMLDmaybe similar to that in themixed layer, concentrating sub-
surface krill in similar patterns to those reflected in the surface. Similarities
between the surface and the sub-surface velocity fields could be driven by
this region’s barotropic tides50, creating similar concentrating features in the
sub-surface as in the surface velocities used to calculate FTLE. Finally, krill
may be attracted to locally concentrated phytoplankton in higher FTLE
values, indicating that both advection and behavior explain their affinity for
LCS features with high FTLE values. Regardless of the mechanism, these
results suggest that thedistributionof krill inPalmerDeep is affectedby food
web focusing driven by small scale currents.

Foraging penguins have very high Reynolds numbers (Re ~106),
indicating that they may move independently of currents. As a result, their
distribution is expected to be most unlike the passive particles used in the
LCS calculations. Results from this study show that penguin foraging
behavior leads to spatial distribution in which there is more frequent pen-
guin dives around locationswith strong concentrating features (highFTLE).
This suggests that while penguins may not actively seek out LCS, they are
more likely to dive once they reach these features and find concentrated
prey. Similar conclusions were drawn by a previous study investigating
elephant seals interacting with larger scale currents51, showing that elephant
seals increase their foraging dives when at distinct oceanographic features.
Unlike the elephant seals, Adélie and gentoo penguinswill return straight to
their nests once satiated, which creates the directed return journeys in the
penguin tracks (Fig. 1b).

Penguin dives above and below the MLD, associated with stronger
FTLE values, suggest that while penguins may use surface cues to initiate
dives, they do not limit their foraging to the surface layer. This result is
consistentwithfindings in krill distributions,where krill swarms both above
and below theMLDwere associated with strong FTLE. Penguins and other
marine mammals transit near the ocean surface from where they dive to
search and forage for their prey, exhibiting a variety of movement
modes52–54. Although dive location and frequency can be quantified, little is

known about the selective interactions of animals during their foraging trips
that produce these patterns55, including whether animals actively search for
prey or use environmental cues associated with prey56. Emerging theories
suggest that selection for environmental cues is likely57, but it is unknown if
Adélie or gentoo penguins respond to prey or environmental cues. Further
research is needed to identify the surface cues Adélie and gentoos use to
decide when to dive for prey.

Despite the wide range in the Reynolds numbers of our study spe-
cies, each species showed selectivity for horizontally concentrating fea-
tures (LCS) derived from passive particle trajectories. As species size and
Reynolds number increases, so does the complexity of their relationship
to LCS. Phytoplankton have low Reynolds numbers, and their distribu-
tions are likely dominated by ocean transport. Krill have intermediate
Reynolds numbers, and their selection for LCS likely reflects a combi-
nation of physical concentration by attractive features and behavioral
attraction to phytoplankton patches. Lastly, Penguins have high Rey-
nolds numbers and behavior-driven distributions, so their selection for
LCS is likely dominated by foraging behavior concentrated at krill pat-
ches. Such selectivity across species with varying Reynolds numbers
demonstrates the importance of ocean transport to multiple levels of the
food web.

Observations of small-scale ocean transport with Lcs
Selection bymultiple levels of the food web for LCS quantified by FTLE at a
6-h integration suggests that FTLE capture transport patterns that create
small-scale (sub-tidal) food web focusing. FTLE is a paired particle tracking
technique, meaning that it uses relative distances between neighboring
particles to quantify attraction and repulsion. This allows FTLE to quantify
attracting features with little influence of the particle’s starting position,
unlike the single particle tracking methods11. FTLE also assigns scalar
quantities to attracting features based on separation rate of neighboring
particles (backwards in time, particle accumulation rate), allowing FTLE to
account for rate of change of particle position rather than position alone.
Additionally, FTLE integrate over particle trajectories, adding “memory” of
particle position to the calculation of attracting features. Yet another
strengthof thismethod is the integrationover time,whichpairswellwith the
high temporal resolution of the HFR velocity data. The incorporation of
relative particle motion and integration over particle trajectories makes
FTLE a powerful tool for quantifying small-scale transport compared to the
use of particle trajectories on their own.

FTLE patterns at these scales are highly variable in space and time, yet
ubiquitous throughout the study system (SupplementaryMovie 1 andFig. 1).
The null model sensitivity test showed similar results when the null model
was constrained to the area closer to the observed transect rather than the
entire LCS bounds (Fig. 5). Therefore, FTLE are not concentrated over the
observed transect but throughout the study region. It is unknown whether
penguins select their colony locations based on proximity to heightened LCS
features. This study sets the groundwork for future investigations into whe-
ther coastal regions on the WAP near persistent penguin colonies have
heighted FTLE activity compared to regions without such colonies.

Fig. 4 | Example of acoustic detection of krill
swarms. Echogram from survey (see Fig. 1a for
survey path) with ACROBAT deployment. Dense
yellow regions outlined in red boxes were detected as
krill using a threshold of −70 to −30 dB. Raw
acoustic data was processed in Echoview software,
following methods of Tarling et al.47,48 to identify
krill swarms from all other backscatter.
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In addition to identifying areas of attraction, strongFTLEwill appear as
horizontal transport barriers, which manifest as horizontal buoyancy gra-
dients (fronts and edges of eddies) in ocean velocity fields. Thismakes areas
of high FTLE oceanographically distinct from areas with low FTLE values.
While attractive transport is likely to be a large reason why phytoplankton
and zooplankton are associatedwith high FTLE values, it is unclear if Adélie
and gentoo penguins are able to select for areas of high FTLE based on a
learned oceanographic cue or if they are able to perceive large krill swarms
and those happen to be at areas of high FTLE. Future work is needed to
investigate penguin (and other forager) behavior that leads to their asso-
ciation with areas of high FTLE.

Limitations and caveats
There are several biological processes that limit the conclusions that can
be made with these observational data. Mapping of prey, which was
conducted through small boat surveys twice weekly, provides a snapshot
in time of a prey field that is constantly evolving. The timing of obser-
vation within the process of food web focusing is unknown. For example,
an area where there was an LCS-identified transport feature could have
been observed shortly after a predator fed on a krill swarm. Our obser-
vations would show that an LCS-identified transport feature was there
without presence of food web focusing, when in fact there was. Our
observations could have also occurred before the ecosystem was able to
respond to the presence of the LCS, perhaps showing high phytoplankton
but no krill, or krill swarms but no penguin foraging. Additionally, far
fewer predators (penguins) exist than prey (krill), making it more diffi-
cult to correlate predators to food web focusing events. With these
caveats in mind, the patterns that were observed likely underestimate the
food web focusing effect of small-scale transport.

Local and global implications
Results and conclusions from this study increase our understanding of how
a coastal biological hotspot is maintained in the context of a larger marine
ecosystem.PalmerDeepCanyonwasonceconsidered tobe a locationwhere
phytoplankton production is driven by local upwelling40. Recent studies
provide evidence against this, showing instead almost no stratified sum-
mertime occurrence of nutrient-rich Upper Circumpolar Deepwater in the
photic zone58. Further, production is light limited rather than nutrient
limited59, suggesting little reliance on locally upwelled nutrient rich waters.

Furthermore, a deep, recirculating eddy driven by the bathymetry of Palmer
Canyon has the ability to trap krill performing diurnal vertical migration60.
This feature may provide a seasonal reservoir of krill, which migrate to the
surface, and are then aggregated in surface LCS structures. Emerging the-
ories propose that high concentrations of phytoplankton40 are advected
from the shelf break where upwelling of nutrient-rich Upper Circumpolar
Deep Water fuels phytoplankton blooms61,62. Future work is needed to
further investigate larger scale, regional transport that reflects climate scale
impacts in the WAP region. Our results further emphasize the importance
of ocean transport in this systemnot just for local phytoplankton abundance
but throughout the food web. Oceanographic transport patterns that reli-
ably concentrate prey could be a reason penguins colonies have persisted in
this region over ecological time scales37. As Palmer Deep Canyon and other
ecosystems along the WAP experience rapid warming63–65, sustained
observations are needed to determine if these transport patterns that local
food webs rely on will change. Future work must also investigate the fate of
the sources of plankton that are being delivered to the system in order to
predict Palmer Deep Canyon’s resistance to changing climate. A depletion
of these sources could be detrimental to Palmer Deep Canyon’s ecosystem
even if transport patterns are maintained.

Selectivity of LCS calculated with short integrations by intermediate
and upper trophic levels illustrates the importance of small-scale transport
features in the spatial ecology of coastal systems. This not only supports the
emerging theory of trophic focusing by physical ocean processes4, but
demonstrates that these processes occur on the sub-mesoscale. Correlations
between LCS and phytoplankton, zooplankton, and top predators stress the
importance of incorporating LCS as a covariate in predictions of spatial
ecology in marine systems.

Our study provides a link between the preyscape of a coastal ecosystem
and ocean transport. This relationship fills the gap in previous studies that
link phytoplankton and top predators’ distributions to ocean transport
without considering the critical mid-trophic level zooplankton. Results also
provide a useful tool for themarine ecological community to quantify ocean
transport features, namely FTLE. FTLE, although more computationally
complex than single particle tracking techniques such as Relative Particle
Density11,66, have been shown to quantify transport features that are selected
by each level of the Palmer Deep Canyon food web, justifying their use in
dynamic coastal environments. Connections betweenoceanmovement and
spatial ecology improve current understanding of how local populations use

Fig. 5 | Example of null model. The area of LCS
coverage is plotted in light grey, shrunk from HFR
coverage (dark grey) to exclude edges of data. The
transect where phytoplankton patches and krill
swarmswere observed is plottedwith a solid red line,
and one of the randomly rotated and translated
transects is plotted with a dashed red line. A sensi-
tivity test was conducted on the null model, con-
straining “randomly generated” transects to the
northeast of the solid black line. A randomly rotated
and translated transect confined to northeast of the
black line is plotted with a dotted red line. Figure
modified from Veatch et al.11 Fig. 3.
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their ocean habitats, enabling more informed conservation strategies to
protect areas of prey accumulation, mitigating anthropogenic impacts on
coastal ecosystems.

Methods
An ocean observatory was deployed around Palmer Deep Canyon during
January-March 2020, mapping phytoplankton, zooplankton, and penguin
foraging behavior onto physical ocean processes. The following section
describes the small boat surveys that were conducted along a transect twice
weekly to observe phytoplankton and zooplankton as well as the HFR array
observations and tagged penguin measurements that overlapped with this
transect.

High Frequency radar
ThreeHigh FrequencyRadarswere deployed aroundPalmerDeepCanyon,
using doppler-shifted radio waves backscattered from ocean waves to
produce vector maps of surface current velocities each hour. HFRs were
deployed on the Joubin Islands, Wauwermans Islands, and at Palmer Sta-
tion (Fig. 1). Remote sites (Joubin and Wauwermans) were each accom-
panied by a remote power module, described in refs. 67,68. Radial
components from each radar69 were added together with an optimal
interpolation algorithm70 and gap filled71 as described in refs. 11,72. The
resulting data product is an evolving hourly map of ocean surface currents
over a 1 km spatial grid.

Calculating mixed layer depth
On the active acoustic survey transects (Fig. 1a), an ACROBAT (Autono-
mous Conductivity, temperature, and depth Rapidly Oscillating Biological
Assessment Towed) was towed, equipped with a fast-sampling (16 Hz)
Seabird FastCAT CTD (conductivity, temperature, and pressure). This
instrument undulated between the surface and about 50m depth, profiling
the upper water column about every 300m in the horizontal. For each
profile, MLD was determined as the depth with the maximum buoyancy
frequency followingmethods in Carvalho et al.45. MLDmeasurements were
used to calculated mixed layer optical backscatter (Section 5.3) and to
determine if krill swarms were above or below the MLD (section 5.4).
ACROBAT profiles were matched with observed krill swarms in space and
time, assigning a MLD to each krill swarm. If the depth of the krill swarm
was shallower than the ACROBAT observed MLD, the swarm was con-
sidered to be within the mixed layer.

Optical surveys
Towed ACROBAT surveys were conducted twice weekly collecting optical
measurements of the water column along transects shown in Fig. 1a.
Methods for identifying phytoplankton patches with ACROBAT optical
measurements followed those in Veatch et al.11, and are explained thor-
oughly there. In short, the ACROBAT profiled between the surface and
about 60m, completing a profile about every 300m of horizontal distance
traveled. Profiles were determined as “within a phytoplankton patch” or
“not in a phytoplankton patch” based on a daily threshold of integrated
mixed layer optical backscatter. In this system, optical backscatter is a good
proxy for phytoplankton biomass and avoids the problem of non-
photochemical quenching that is associated with measuring phyto-
plankton fluorometrically. Consecutive profiles designated as “within a
phytoplankton patch”were assumed to be in the same phytoplankton patch
(Supplementary Fig. 2).

Each ACROBAT profile was assigned an FTLE value based on the
closest FTLE grid point to the profile in space and time. Phytoplankton
patchesmade up ofmultiple profiles were assigned an FTLE value based on
the average FTLE value assigned to the profiles within that
phytoplankton patch.

Acoustic surveys
Active acoustic surveys were conducted twice weekly using a hull-mounted
SIMRAD EK80 single-beam, single frequency (120 kHz) echosounder

(Kongsberg Maritime) along transects shown in Fig. 1a. The echosounder
was configured with a 1 s ping rate, 512 µs pulse duration, and 24 µs sam-
pling duration. Calibrations of the echosounder were performed in the
vicinity of Palmer Deep Canyon using a tungsten sphere (diameter = 38.1
mm) during February, 2020. Acoustic data were processed in Myriax
Echoview software version 11.1 followingmethods fromTarling et al.47 and
Tarling et al.48. Raw data were processed to consider the echosounder
calibration and in situ ocean acoustic conditions via incorporation of
onboard CTD data, and to remove background noise and other inter-
ferences via the BackgroundNoise Removal73 and ImpulseNoise Removal74

algorithms in Echoview. Krill were then detected using a target strength
threshold of −70 dB to −30 dB47,48 in Echoview following similar para-
meterization and protocols to Nardelli et al.28 and Reiss et al.75 (Fig. 3).

All acoustically detected krill swarms were manually reviewed before
exporting the acoustic data in Nautical Area Scattering Coefficient (NASC)
values, a common proxy for organism presence in acoustic measurements.
NASC values were calculated per detected swarm and exported along with
depth, GPS position (longitude and latitude), swarm height, swarm length,
and backscatter (Sv). These methods for acoustic surveys and processing of
subsequent acoustic data follow those in Hann et al.46.

Penguin tagging
Adélie penguin colonieswere located onHumble Island (64°45’S, 64°05’W),
Torgersen Island (64°46’S, 64°04’W), andBiscoe Island, (64°48’S, 63°46’W),
with the latter location also including a colony of gentoo penguins (Fig. 1b).
Both species were double tagged with GPS tags and time-depth recorders
measuring pressure at 0.5 Hz while wet. Penguins were GPS tagged with
either a Lotek FastGPS (F5G 234B, 35 g), Sirtrack Fastloc 3 loggers (30 g) or
igotU GT-600 (35 g, Mobile Action Technology, Taiwan). IgotU loggers
were encased in adhesive-line heat shrink tubing. The time-depth recorders
were either a Lotek LAT1810 (10 g) or StarOddiDSTCTD(22 g). Tagswere
adhered to the anterior feathers on the lower dorsal area of the penguin. All
protocolswere carriedout in accordancewith the approved guidelines of the
Columbia University (Assurance #AAAS2504) Institutional Animal Care
and Use Committee for the 2019–2020 season. Tags were generally
deployed on individuals for 2–4 days before being removed and reattached
to another penguin. We tagged 30 Adélie and 14 gentoo penguins over the
course of the austral summers (Table 1).

Drift in the depth data for tags was zero offset corrected using the
calibrateDepth function in the R package diveMove76. Drift was not cor-
rected for 7 deployments, as on 6 of these deployments (all Adélies, 5
Humble Island, 1 Torgersen Island) depth recordings shallower than 1
meterwerenot taken, andon1deployment (1Adélie,Humble Island)depth
recordings shallower than 5 meters were not taken. GPS data were filtered
for erroneous locations based on improbable swimming speeds
(>2.8m s−1). GPS location andTDRdatawere timematched anddiveswere
identified using the diveStats function in diveMove76.

Penguin data collection was conducted by Polar Oceans Research
Group (PORG) as part of project SWARM.

Creating null models
Distribution of LCS where phytoplankton patches and krill swarms were
observed in our transects were compared to those along simulated “null
model” phytoplankton patches and krill swarms. The phytoplankton and
krill null models were created by randomly moving the observed

Table 1 | Tagged penguins by colony

Colony Penguins tagged Trips recorded

Adélie - Humble Island 12 23

Adélie - Torgersen Island 13 24

Adélie – Biscoe Island 5 13

Gentoo - Biscoe Island 14 32

Number of individual Adélie and gentoo penguins tagged per colony.
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distribution of phytoplankton and krill within the LCS field (Fig. 5),
maintaining the observed phytoplankton patch and krill swarm size and
distribution along the transect. Eachof the thirteen surveyswere rotated and
translated 100 times, creating 100 randomized locations of each observed
phytoplankton patch and krill swarm while maintaining the shape of the
survey. This ensured that the survey shape did not contribute to differences
found between observed and null model phytoplankton patches and krill
swarms. These randomized locations make up the phytoplankton and krill
null model. Methods for using the survey transect to create the null model
were adapted from Veatch et al.11.

A sensitivity study was conducted on the null model to test if the
differences between the null model and observations were due to the area
where the survey was conducted having more FTLE than elsewhere in the
study area. A new model was created following above methodology but
requiring the randomlymoved transects to bewithin a smaller area closer to
the observed transect (northeast of the black line in Fig. 5). This constrained
null model produced the same results as the original null model (see
Results).

Distribution of LCS selected by penguinGPS locations were compared
to those along simulated “null model” penguin tracks. Penguin null models
were created with simulated Brownian motion of central place foragers
(simm.bb in the adehabitatLT R package)77, having the simulated penguin
tracks return to the Adélie and gentoo colonies at the end of each trip
(Fig. 1b). Each day that we had overlapping penguin observed data and LCS
results from HFR-observed surface currents, ten penguin trips were simu-
lated for each species. These trips were limited to 24 h, and simulated
penguin speeds were normally distributed around amean of 4 km hr−1 with
a maximum of 8 km h−1. These limitations were set to mimic average
foraging trip duration (6–24 h)44 and swimming speeds78 of Adélie and
gentoo penguins. The Brownian motion used to create these tracks is
uncorrelated.Therefore, simulated tracks represent randomforagers that do
not select for environmental features or remembering previous feeding
locations. Simulated penguin locations were used as a null metric for all the
available LCS values for non-selecting central place foragers. Methods for
the creationof simulatedAdélie and gentoo trackswere adapted fromOliver
et al.66.

Calculating Lagrangian Coherent Structures
LCS were calculated from the HFR observed surface currents using the
FTLE metric. FTLE were calculated beginning with a velocity field over a
selected time interval (in this case, 6 h). Then, from the derivative of theflow
map theCauchy-Green strain tensorfield (C) and eigenvectorfield (λi)were
computed to be used in Eq. (1):

S x0
� � ¼ maxi¼Nλi C x0

� �� �� �1=2 ð1Þ

where S x0
� �

is the maximum stretching around point x0. FTLE is then
computed over a finite time (T)10,79–81. The resulting FTLE field changes in
space and time with inputted HFR observed velocity field. These methods
follow those in Veatch et al.11.

Matching observed presence of null models to LCS
To associate krill and penguin presence with LCS, observations were mat-
ched in both space and time. LCS results were calculated each hour and at a
1 km spatial resolution to match the resolution of inputted HFR velocity
data. Krill swarms and penguin locations were matched to the nearest hour
of LCS map. This means that for the LCS results computed for 13:00 on
January 15th, all krill and penguin location observations between 12:30 and
13:30 on January 15th were compared to the LCS results from 13:00. To
match krill and penguin presence with LCS in space, a haversine function82

was used tofind the closest LCS result grid point (using the center of the grid
point) to the krill or penguin location. The LCS value in that grid point for
the LCS results on the nearest hour were associatedwith the krill or penguin
observation. The same was done for null models.

Kolmogorov-Smirnov tests
Two-sample Kolomogorov-Smirnov (KS) tests83 were used to determine if
there are significant differences between the empirical distribution functions
of observations and null models. KS tests are conducted using Eq. (2):

D ¼ supx Fn;1 xð Þ � Fn;2ðxÞ
�� �� ð2Þ

whereD is the test statistic,Fn;1 xð Þ andFn;2ðxÞ are the empirical distribution
functions of the two samples. A small p-value from the KS test means that
the two samples come from different distributions. One-sided KS tests are
especially good at determining if the tails of two cumulative distributions are
significantly different from each other.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data and code used in this study are publicly available on NSF funded
project SWARM’s BCO-DMO site and GitHub. High Frequency Radar
observed surface currents are available in the gap-filled version used in this
study on BCO-DMO84. Lagrangian Coherent Structure Results for FTLE
metrics are available onBCO-DMO85. EK80acoustic dataused todetect krill
swarms are available on BCO-DMO ACROBAT data used to detect phy-
toplankton patches are available on BCO-DMO86 Penguin GPS tag data are
available University of Delaware’s public archive (http://modata.ceoe.udel.
edu/public/Antarctica_2020/SWARM_Penguin_CSVs/). Any questions
can be directed to Jacquelyn Veatch (jveatch@whoi.edu).

Code availability
Code used to gap-fill High Frequency Radar data are available on GitHub
(https://github.com/JackieVeatch/SWARM_CODAR). The code used to
produce LCS results can be found on GitHub (https://github.com/
JackieVeatch/SWARM_LCS). The code was modified from open-source
MATLAB library80 for use on HFR data. All other code for analysis can be
found on GitHub (https://github.com/JackieVeatch/SWARM_analysis,
https://github.com/JackieVeatch/SWARM_Krillanalysis, and https://
github.com/JackieVeatch/SWARM_PenguinAnalysis). Any questions can
be directed to Jacquelyn Veatch (jveatch@whoi.edu).
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