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Abstract The Southern Ocean plays a vital role in global CO2 uptake, but the magnitude and even the sign
of the flux remain uncertain, and the influence of phytoplankton phenology is underexplored. This study focuses
on the West Antarctic Peninsula, a region experiencing rapid climate change, to examine shifts in seasonal
carbon uptake. Using 20 years of in situ air‐sea CO2 flux and satellite‐derived Chlorophyll‐a, we observe that the
seasonal cycles of both air‐sea CO2 flux and Chlorophyll‐a intensify poleward. The amplitude of the seasonal
cycle of the non‐thermal component of surface ocean pCO2 increases with increasing latitude, while the
amplitude of the thermal component remains relatively stable. Pronounced biological uptake occurs over the
shelf in austral summer despite reduced CO2 solubility in warmer waters, which typically limits carbon uptake
through physical processes. These findings underscore the prominence of biological mechanisms in regulating
carbon fluxes in this rapidly changing region.

Plain Language Summary The Southern Ocean plays a key role in absorbing carbon dioxide from
the atmosphere, but we are still trying to understand exactly how much carbon dioxide the Southern Ocean
absorbs and what factors influence this process. The West Antarctic Peninsula is an important area for studying
these changes because it is experiencing rapid warming. We looked at changes in the amount of carbon dioxide
in the surface ocean water and the amount of microscopic drifting plants (phytoplankton) based on the amount of
the pigment Chlorophyll‐a over the past 20 years. Seasonal cycles of both carbon dioxide and Chlorophyll‐a
increase from north to south in their amplitude, or their range between the minimum and the maximum each
year. In summer, contrary to the effect of warm temperatures which would usually limit carbon uptake by way of
physics, strong biological drawdown by phytoplankton dominates the signal.

1. Introduction
Despite the Southern Ocean playing a major role in the global carbon budget, many questions remain about the
role of phytoplankton as a mechanism for carbon uptake. The Southern Ocean acts as a central hub for the world's
oceans, where waters from all the world's water masses converge and mix. It is a region of deep water formation
and represents an important region in regulating pre‐industrial and anthropogenic ocean carbon levels, thus also
impacting atmospheric CO2 levels (Caldeira & Duffy, 2000; Marinov et al., 2006; Sarmiento & Orr, 1991).
Debate remains about whether the Southern Ocean is a net sink or source for atmospheric CO2. Models and
airborne observations suggest that the Southern Ocean is a CO2 net sink (Long et al., 2021), but early results from
profiling floats suggest that it is a net source (Bushinsky et al., 2019; Gray et al., 2018). The magnitude of the
difference between those two estimates is ∼0.9 Gt C yr− 1 (Long et al., 2021), approximately one third of the total
global air‐sea CO2 flux (∆pCO2) (2.8 Gt C yr

− 1) (Friedlingstein et al., 2023). Limited observations due to its
remote location and rough conditions are the main reason for this uncertainty.

The role of phytoplankton processes is often underemphasized despite its contribution to ∆pCO2, specifically in
the Southern Ocean. Instead, physical mechanisms are more commonly emphasized, such as isopycnal transport,
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diapycnal eddy diffusion, transfer from the continental shelf to the deep ocean, entrainment/detrainment, and air‐
sea gas exchange (Arroyo et al., 2020; Bernardello et al., 2014; Caldeira & Duffy, 2000; Yang et al., 2021).
However, in many regions of the Southern Ocean, strong summer season primary production is a key contributor
to the seasonal oceanic CO2 sink (Carrillo et al., 2004; Legge et al., 2015, 2017; Schultz et al., 2021; Tortell
et al., 2015). Compared with other oceans, the Southern Ocean is unique in that biology plays a dominant role in
the surface ocean carbon cycle on all timescales (Fay & McKinley, 2017). The biological contribution of
phytoplankton production, while partially balanced by physical mechanisms at annual timescales (Munro,
Lovenduski, Stephens, et al., 2015), is a principal factor, especially within the seasonal sea ice zone.

Regions vary widely and the Southern Ocean cannot be considered as a single ecosystem. Phytoplankton from
different zones respond differently to environmental forcings over time (Turner et al., 2024) with polynyas and
coastal zones often acting as substantial carbon sinks despite their small size (Monteiro, Kerr, & Machado, 2020;
St‐Laurent et al., 2019). The Drake Passage and continental shelf west of the Antarctic Peninsula (Figure 1) serve
as a representative case study of spatial variability in phytoplankton biomass, phenology, and air‐sea carbon
exchange. The Drake Passage is a highly variable region in terms of carbon uptake, with multiple zones of CO2
sinks and sources delimited by marine fronts (Arbilla et al., 2024). Drake Passage Chlorophyll‐a concentration
(Chl‐a) is relatively low compared to coastal Antarctic waters, representative of conditions in the broader subpolar
Southern Ocean (Fay et al., 2018).

In contrast, over the continental shelf, the seasonal cycle of air‐sea carbon exchange is larger in amplitude, with
surface ocean Chl‐a and carbon uptake generally increasing moving poleward due to biological processes
(Eveleth et al., 2017; Kim et al., 2018; Turner et al., 2024). Within the West Antarctic Peninsula (WAP) region,
ocean biogeochemistry and physics are highly regionalized (Testa et al., 2021), and there is high spatial variability
in carbonate system parameters in the Mid Shelf subregion (Hauri et al., 2015). Mooring data from the WAP
continental shelf show that this area is an annual atmospheric CO2 sink, with substantial biological drawdown in
spring and summer only partially replenished by physical processes since seasonal sea ice suppresses winter
outgassing (Shadwick et al., 2021; Yang et al., 2021). The WAP region is a sentinel region for polar ecosystem
change with regionally relevant sinks for anthropogenic CO2 (Arrigo et al., 2008; Henley et al., 2019; Schofield
et al., 2018). The WAP region is losing sea ice more rapidly than other parts of Antarctica (Reid et al., 2024;
Stammerjohn & Scambos, 2020), and that loss impacts water column stability, primary production and surface
ocean carbon uptake (Brown et al., 2019; Ducklow et al., 2013; Schofield et al., 2017).

When considering the contribution of primary production to the seasonal CO2 sink, the seasonal timing or
phenology is often ignored. Shifts in the timing of the occurrence of the phytoplankton growing season have the
potential to alter carbon cycling. Most observations in Antarctica are made in summer, thus seasonal dynamics are
understudied and longer‐term fluctuations in the rest of the seasonal cycle are mostly unknown. Phenological
analysis is especially crucial in this region (Cimino et al., 2023) because most of the WAP shows high interannual
variability in the seasonal cycle of Chl‐a via satellite observations, with interannual variability increasing over
time (Thomalla et al., 2011, 2023). Ship‐based observations of the entire WAP marine ecosystem are available
during summer and there are year‐round mooring observations of pCO2 for some isolated years; however, satellite
Chl‐a and ship‐based pCO2 observations specifically enable analysis of the seasonal cycle of the surface ocean
carbon cycle and its biological component. The consequences of seasonality need to be considered.

This paper documents strong north‐to‐south gradients in the amplitude of seasonal cycles of ∆pCO2 and Chl‐a
and demonstrates tight coupling between ∆pCO2 and Chl‐a seasonal cycles indicating the strong seasonal bio-
logical drawdown in this region. These findings contribute to resolving the ongoing debate about whether the
Southern Ocean is a net sink or source of atmospheric CO2, a question with significant implications for global
carbon budget estimates.

2. Methods
2.1. Data Sources

2.1.1. In Situ ∆pCO2, pCO2atm, and pCO2sur Observations

∆pCO2 was calculated using the observed partial pressure of CO2 in the atmosphere (pCO2atm) and partial
pressure of CO2 in the surface ocean (pCO2sur) as the difference pCO2sur–pCO2atm. pCO2atm is the dry air mixing
ratio of atmospheric CO2 from the Global Monitoring Laboratory surface marine boundary layer CO2 (Lan
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et al., 2023) multiplied by NCEP sea level pressure (Kalnay et al., 1996) at monthly resolution and applying the
water vapor correction according to Dickson et al. (2007). Underway pCO2sur data were collected on research
vessels (ship tracks) from 2000 to 2020 (Figure 1a). pCO2sur was collected mainly from ships using underway and
discrete sampling. More detailed methods for the collection of data in the Drake Passage Time‐series and Surface
Ocean CO2 Atlas (SOCAT) v2023 (Bakker et al., 2016) are described in detail by Munro, Lovenduski, Stephens
et al. (2015), Munro, Lovenduski, Takahashi et al. (2015). Many of the in situ pCO2sur observations were

Figure 1. Map of the study area (55–80°W, 57–70°S) with subregions Drake Passage (yellow), Northern Shelf (red), Mid
Shelf (green), and Southern Shelf (cyan), showing (a) bathymetry, (b) mean satellite‐derived Chl‐a 1997–2022, and (c) ship
track locations for underway pCO2 data 2000–2020.
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collected as part of the Palmer Long Term Ecological Research (Pal‐LTER) program. pCO2sur observations are
collected in nearly every month of the year, which is uncommon in the Southern Ocean region, and the high
sampling frequency makes this seasonal analysis possible.

2.1.2. Satellite Chl‐a Observations

Satellite‐derived Chl‐a data (Turner, 2025) were sourced from OC‐CCI v6.0 (Sathyendranath et al., 2019), a
merged multi‐sensor, 4 km spatial resolution, monthly level‐3 product using a global Chl‐a algorithm estimated
using a blended combination of OCI, OCI2, OC2, and OCX algorithms depending on optical water class
membership (Gohin et al., 2002; Hu et al., 2012; O’Reilly & Werdell, 2019). Satellite‐derived surface Chl‐a is
useful in polar regions despite inherent limitations (e.g., imperfect metric for biomass, high solar zenith angle,
surface‐only, limited winter data) because satellite data availability enables analysis over austral spring, summer,
and early fall in the WAP (e.g., Turner et al., 2024). Ocean color data were used where >15% of monthly ob-
servations were present to avoid analyzing locations covered by sea ice for most of the record. Since global
algorithms underestimate in situ WAP Chl‐a by a factor of 2–2.5 (Dierssen & Smith, 2000; Kahru & Mitch-
ell, 2010; Mitchell, 1992; Mitchell & Holm‐Hansen, 1991), a correction was applied to better reflect the spatial
range of in situ Chl‐a for theWAP region as in Dierssen and Smith (2000), which had minimal effects at low Chl‐a
concentrations representative of offshore waters where the global algorithm generally performs well (Dier-
ssen, 2000; Haëntjens et al., 2017) (Figure S1 in Supporting Information S1).

2.2. Data Analysis

Spatially, four subregions of the WAP were analyzed (Figure 1). The Drake Passage region encompasses the
narrow ocean region which includes the Drake Passage Time‐series ship tracks. The shelf regions are bounded by
the edge of the shelf (1,000 m isobath) and sub‐divided into Northern, Mid, and Southern Shelf subregions based
on long‐term mean Chl‐a concentrations. The Drake Passage subregion here corresponds to zones from Gray
et al. (2018), Haëntjens et al. (2017), and Fay and McKinley (2014) which have similar characteristics in terms of
temperature, Chl‐a, and seasonality. The Northern Shelf subregion corresponds to an area north of the traditional
area sampled every austral summer by the Pal‐LTER program, whereas the Mid Shelf subregion used here
corresponds to main area sampled by the Pal‐LTER program. The Southern Shelf subregion includes Marguerite
Bay and comprises the southernmost portion of the Pal‐LTER sampling area.

Temporally, monthly means were used to mitigate data sparsity especially of in situ pCO2sur observations (Figure
S2, Table S1 in Supporting Information S1). Satellite Chl‐a data are unavailable over the shelf from April to
September due to low light and the presence of sea ice. Ship‐based pCO2sur observations are limited for the winter
season in the Mid Shelf and slightly biased toward summer for all subregions. Data were analyzed for austral
years 2000–2020 that is, 1 July 2000 to 30 June 2020. Seasons used for the Southern Hemisphere are delimited by
the months December to February (summer), March to May (fall), June to August (winter), and September to
November (spring).

Sea surface temperature (SST) values from concurrent underway ship track data were used to calculate thermally
driven (pCO2sur‐T) and non‐thermally‐driven (pCO2sur‐non‐T) components of the pCO2sur seasonal cycles.
pCO2sur‐T and pCO2sur‐non‐T components were calculated following the approach of Takahashi et al. (1993)
using equations from Wanninkhof et al. (2022).

Correlations between seasonal cycles of Chl‐a and pCO2 seasonal cycles (∆pCO2, pCO2sur, pCO2sur‐T, and
pCO2sur‐non‐T) were calculated over all months per year when data were present. We determined the Pearson
correlation coefficient (R) between variables and computed the significance (p) by testing the null hypothesis that
the correlation is zero using a Student's t‐distribution via MATLAB function “corrcoef”. Amplitudes of seasonal
cycles were calculated via the difference between the maximum and minimum monthly values over the year for
each decadal mean seasonal cycle (i.e., for 2000–2010, Chl‐a seasonal cycle amplitude = maximum in January–
minimum in September).
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3. Results
3.1. Seasonal Patterns and Amplitudes of Seasonal Cycles

Seasonal cycles in Chl‐a and ∆pCO2 increase in amplitude moving poleward (Figure 2, Table 1). In the Drake
Passage, Chl‐a is generally low (<1 mgm− 3) with a small amplitude seasonal cycle (0.5 mgm− 3) (Figure 2a). The
∆pCO2 seasonal cycle in the Drake Passage is similarly relatively small in amplitude (18 μatm) (Figure 2e, Figure
S3 in Supporting Information S1). In the Northern Shelf, the Chl‐a seasonal cycle amplitude of 1.2 mg m− 3

(Figure 2b) and the ∆pCO2 seasonal cycle amplitude of 89 μatm (Figure 2f) are larger than those of the Drake
Passage but not as substantial as those in subregions farther to the south. In the Mid Shelf, Chl‐a shows a greater
seasonal cycle amplitude of 1.8 mg m− 3 (Figure 2c) and a similarly large ∆pCO2 seasonal cycle amplitude
(143 μatm) (Figure 2g). The Southern Shelf has the highest amplitude seasonal cycles of any subregion for both
Chl‐a (4.5 mg m− 3) (Figure 2d) and ∆pCO2 (186 μatm) (Figure 2h).

The thermal and non‐thermal components of the pCO2sur seasonal cycle are balanced in the Drake Passage, but
non‐thermal drivers including biology overpower the seasonal cycle over the shelf, particularly in the Southern
Shelf subregion. The small amplitudes of the pCO2sur and ∆pCO2 seasonal cycles in the Drake Passage result
from the opposing effects of temperature and non‐temperature related factors including biology (Figure 2i).
Winter cooling decreases pCO2sur concurrent with deep mixing increasing pCO2sur. Summer warming increases
pCO2sur while biological carbon uptake lowers pCO2sur. In the Drake Passage, these components balance one
another to result in a small‐amplitude seasonal cycle. In the Northern Shelf andMid Shelf, the thermal component
is only partially balanced by the non‐thermal component, with the non‐thermal component showing strong

Figure 2. Seasonal cycles of Chl‐a,∆pCO2, and pCO2sur with thermal and non‐thermal components 2000–2020 showing Chl‐a (a–d),∆pCO2 (e–h), and pCO2sur (i–l) for
the Drake Passage (a, e and i), Northern Shelf (b, f and j), Mid Shelf (c, g and k), and Southern Shelf (d,h,l) subregions. (See Figure S3 in Supporting Information S1 for
∆pCO2 as in e‐h with regionally scaled y‐axes). Error bars represent ±1 standard deviation.
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negative correlations with the Chl‐a seasonal cycle (Table 1). In the Southern Shelf, the non‐thermal component
dominates the seasonal cycle (Figure 2l). This far south, biological production is strong enough to substantially
overbalance the thermal component.

3.2. Coupling Between Seasonal Cycles of Chl‐a and ∆pCO2

Seasonal cycles of phytoplankton biomass and carbon uptake are generally the inverse of one another in subpolar
and polar regions (Körtzinger et al., 2008; Lüger et al., 2004; Takahashi et al., 1993, 2002). In this analysis, Chl‐a
and∆pCO2 seasonal cycles are strongly and significantly negatively correlated to one another (p < 0.05) in every
subregion (Figure 2, Table 1). The strongest Chl‐a–∆pCO2 correlations occur in the three shelf subregions
(R = − 0.97, − 0.93, and − 0.95). Slightly less strong Chl‐a–∆pCO2 correlations are found in the Drake Passage
(R = − 0.76) where the seasonal cycle of ∆pCO2 is less distinct. Chl‐a and pCO2sur seasonal cycles are strongly
negatively correlated over the shelf, but not significantly in the Drake Passage. Over the shelf, correlations be-
tween Chl‐a and the thermal and non‐thermal components of pCO2sur are strongly correlated, with positive
correlations (R= 0.9 to 0.96) between the Chl‐a and the thermal component and negative correlations (R= − 0.94
to − 0.98) between Chl‐a and the non‐thermal component (which includes biology). In the Drake Passage, no
correlation was found between Chl‐a and the thermal and non‐thermal components of pCO2sur (Table 1).

4. Discussion
4.1. Biologically Mediated ∆pCO2 Seasonal Cycles

The seasonal cycle of pCO2sur in the subregions is driven by a combination of thermal and non‐thermal factors,
with non‐thermal components (including biological processes) showing larger amplitudes than thermal com-
ponents and stronger correlations with Chl‐a (Table 1, Figure 2). Sea ice formation, meltwater, and vertical
mixing likely regulate pCO2 seasonal cycles in addition to temperature and biological influences; however, the
strong correlations between Chl‐a and the non‐thermal component of the pCO2 seasonal cycles support the idea
that biological production is a strong driver over the shelf. In the Drake Passage, the opposing influences of
temperature and biology result in a small‐amplitude seasonal cycle and a modest CO2 sink. Conversely, in the
Northern and Mid Shelves, the non‐thermal component is only partially balanced by thermal effects. The
Southern Shelf is dominated by non‐thermal factors, including biological production, producing a large seasonal
cycle amplitude and functioning as a noteworthy CO2 sink.

These results suggest that biology dominates the seasonal cycle of surface ocean carbon uptake, especially over
the Southern Shelf. Correlations between the seasonal cycles of ∆pCO2 and Chl‐a are strongly negative in all

Table 1
Amplitudes and Correlations of Chl‐a, ∆pCO2, pCO2sur and the Thermal and Non‐Thermal Components of pCO2sur Seasonal
Cycles

Drake passage Northern shelf Mid shelf Southern shelf

Seasonal Cycle Amplitudes

Chl‐a 0.5 mg m− 3 1.2 mg m− 3 1.8 mg m− 3 4.5 mg m− 3

∆pCO2 18 µatm 89 µatm 143 µatm 186 µatm

pCO2sur 20 µatm 93 µatm 145 µatm 195 µatm

pCO2sur‐T 66 µatm 51 µatm 47 µatm 35 µatm

pCO2sur‐non‐T 76 µatm 139 µatm 182 µatm 224 µatm

Seasonal Cycle Correlationsa

Ra p R p R p R p

Chl‐a versus ∆pCO2 − 0.76 0.018 − 0.97 < 0.001 − 0.93 0.001 − 0.95 0.001

Chl‐a versus pCO2sur − 0.66 0.055 − 0.97 < 0.001 − 0.93 0.001 − 0.95 0.001

Chl‐a versus pCO2sur‐T − 0.07 0.854 0.96 < 0.001 0.90 0.002 0.90 0.006

Chl‐a versus pCO2sur‐non‐T − 0.13 0.740 − 0.98 < 0.001 − 0.94 0.000 − 0.95 0.001

Note. Italicized values indicate significant correlations (p < 0.05). aPearson correlation coefficient.
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subregions (Figure 2, Table 1). The amplitudes of the non‐thermally‐driven component of the seasonal cycle of
pCO2sur (which includes biology) are larger in all subregions than those of the thermally driven component
(Figures 2i–2l). pCO2sur‐non‐T amplitudes reach 224 μatm (Southern Shelf), while pCO2sur‐T seasonal cycle
amplitudes range from 35 to 66 μatm (Table 1). The thermal component of the seasonal cycle is mirrored in SST
seasonal cycles, which show warm temperatures in summer months with the highest temperatures occurring in
summer in all subregions. Contrary to the effect of summer warming which would typically limit carbon uptake
via low solubility in other ocean regions, strong biological drawdown dominates the ∆pCO2 seasonal signal
during these warm months in the shelf subregions. The Southern Ocean is the only global ocean region where
biology controls the surface ocean carbon cycle at all timescales (Fay & McKinley, 2017); the WAP continental
shelf is a prime example of this phenomenon. Biology‐driven control of pCO2 has been observed in the WAP
more so than in other subregions of the Pacific Southern Ocean (Mo et al., 2023), and in the Northern Shelf
biological activity was a dominant surface ocean carbon removal mechanism (Ito et al., 2018). The Drake Pas-
sage, with its open ocean characteristics, allows physical mechanisms to partially balance out biological uptake,
acting to dampen the seasonal cycle in this region (Munro, Lovenduski, Stephens et al., 2015). Conversely, over
the WAP continental shelf, the seasonal cycles of ∆pCO2 and Chl‐a are tightly coupled (Figure 2, Table 1) and
large in amplitude, suggesting that biology governs the surface ocean carbon cycle over the shelf.

4.2. Strong North–South Gradient in Biological Carbon Drawdown

The amplitudes of the seasonal cycles of ∆pCO2 and Chl‐a increase moving poleward (Figure 2). The Drake
Passage ∆pCO2 seasonal cycle amplitude of 18 μatm compares well with that of the Southern Ocean Time Series
just south of Australia (Yang et al., 2024) and is representative of open‐ocean Southern Ocean waters. Over the
continental shelf, moving from north to south, the amplitudes increase, with approximately an order of magnitude
difference between the Drake Passage and the Southern Shelf subregion amplitudes (from 18–186 μatm to 0.5–
4.5 mg m− 3) (Figure 2, Table 1). While the Northern Shelf and Mid Shelf show strong relationships between Chl‐
a and the non‐thermal component of pCO2sur, the seasonal cycles of carbon uptake there are not as strongly
biologically driven nor as strong a sink as in the Southern Shelf. During austral summer the Northern Shelf acts as
a CO2 sink, but at the annual timescale operates as a net source (Ito et al., 2018; Monteiro, Kerr, Orselli, &
Lencina‐Avila, 2020). The Southern Shelf amplitudes are considerably large, demonstrating highly productive
waters with some of the highest seasonal biologically driven inorganic carbon drawdown anywhere in the global
ocean (Legge et al., 2015; Roobaert et al., 2019). The biological contribution of phytoplankton production is more
substantial near the seasonal sea ice zone, possibly due to sea ice's effects to enhance the stability of the upper
water column, shielding from wind mixing, or ice edge upwelling, or gradients in nutrient availability
(Smith, 1987), drivers which require future research.

4.3. Ecosystem Implications

Changes in carbon uptake are intricately associated with shifts in the overall carbonate chemistry of the system,
occurring simultaneously and influencing each other through various feedback mechanisms. There may be a shift
in pH and saturation state of aragonite especially in summer and fall over the shelf. In the Australian sector of
Southern Ocean, the seasonal cycle of pCO2 increased in amplitude from 2011 to 2020 with a corresponding
decrease in pH (Shadwick et al., 2023). In the WAP, large biological carbon drawdown in summer generally
increases aragonite saturation state in surface waters nearshore despite meltwater inputs, thus there are unlikely to
be negative consequences in terms of acidified conditions for calcifying organisms in this system in the near term.
In terms of phytoplankton community composition, diatoms are particularly important for the efficiency of the
biological pump over the shelf in this region (Brown et al., 2019; Costa et al., 2020), and the seasonal succession
of different groups and top‐down grazing pressure likely moderate the biological contribution to ∆pCO2 (Costa
et al., 2023); these factors merit further study. Overall, our results highlight the need for a broader understanding
of seasonal variability and long‐term trends in the WAP marine ecosystem, including continued monitoring and
research efforts to assess the impacts of climate change on coastal Antarctic environments.

5. Conclusions
In summary, the seasonality of surface ocean carbon uptake varies with latitude in the WAP region, and seasonal
cycles show strong biologically driven uptake moving poleward. Seasonal cycles of both ∆pCO2 and Chl‐a
increase in amplitude moving poleward, from small‐amplitude seasonal cycles (18 μatm and 0.5 mg m− 3) in
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the Drake Passage to high‐amplitude seasonal cycles (186 μatm and 4.5 mg m− 3) over the southern continental
shelf region. Massive biological drawdown of CO2 occurs over the continental shelf in summer, with biological
utilization driving pCO2sur substantially lower, overshadowing the tendency for summer warming and low sol-
ubility to concurrently raise pCO2sur. These findings help answer whether the Southern Ocean acts as a net sink or
source of CO2 in the context of the global carbon budget.

Appendix A: Notation
Abbreviation Definition
Amplitude
Maximum minus minimum monthly values over the seasonal cycle
Chl‐a
Chlorophyll‐a pigment concentration (mg m− 3)
OC‐CCI
Ocean color climate change initiative
OC2
Ocean Color‐2 Chl‐a algorithm using two wavelengths (O’Reilly et al., 2000)
OCI
Ocean Color Index Chl‐a algorithm (Hu et al., 2019)
OCI2
Chl‐a algorithm adjusted as a hybrid between one version of OCI and OCX (Hu et al., 2019).
OCX
Ocean Color‐3 to − 6 series of Chl‐a algorithms using 3 to 6 wavelengths (O'Reilly & Werdell, 2019).
∆pCO2
Air‐sea CO2 flux, the difference pCO2sur–pCO2atm (μatm)
pCO2atm
Partial pressure of carbon dioxide in the atmosphere (μatm)
pCO2sur
Partial pressure of carbon dioxide in the surface ocean (μatm)
pCO2sur‐T
Thermal component of the pCO2sur seasonal cycle (μatm)
pCO2sur‐non‐T
Non‐thermal component of the pCO2sur seasonal cycle (μatm)
Pal‐LTER
Palmer Long‐term ecological research program
SOCAT
Surface Ocean CO2 Atlas
SST
Sea surface temperature
WAP
West Antarctic Peninsula

Data Availability Statement
Ocean color data used in satellite‐derived Chl‐a analysis are available from the Ocean Colour Climate Change
Initiative (OC‐CCI) (Sathyendranath et al., 2019) and are accessible at https://www.oceancolour.org/thredds/
catalog‐cci.html?dataset=CCI_ALL‐v6.0‐MONTHLY. Surface ocean pCO2 data are available from the Surface
Ocean CO2 Atlas (SOCAT) v2023 (Bakker et al., 2016) and are accessible at https://socat.info/index.php/data‐
access/. For this study SOCAT V2023 was used which is available at https://socat.info/index.php/previous‐
versions/. pCO2atm is the dry air mixing ratio of atmospheric CO2 (xCO2) from the Global Monitoring Laboratory
surface marine boundary layer CO2 product available at https://gml.noaa.gov/ccgg/mbl/mbl.html (last access: 19
November 2024) (Lan et al., 2023). Code to make figures in this paper is available at https://doi.org/10.5281/
zenodo.14608738 (Turner, 2025).
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