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1.  INTRODUCTION 

Phenology involves the timing of annually recur-
ring events in nature. For ocean ecosystems, a promi-
nent annual event is the start date of the phytoplank-
ton accumulation season, commonly referred to as 
the start of the spring bloom. In this paper, we use the 
term ‘accumulation season’ to describe the period 
during each year when phytoplankton biomass as 
measured by surface chlorophyll a (chl a) concentra-
tion is increasing, such that the average phytoplank-
ton mass-specific loss rates are smaller than their 

growth rates. The spring bloom is the foundation of 
the marine food web. The intense seasonal surge in 
primary production supports the zooplankton com-
munity, which in turn provides a rich food source for 
fish and other higher trophic level organisms (Riley 
1942, Fenchel 1988, Winder & Sommer 2012). As cli-
mate warms, most research predicts earlier start dates 
for the phytoplankton accumulation season in the 
world’s oceans. On average, studies show a shift to -
ward earlier phytoplankton bloom timing by approx-
imately 4 d per decade (Poloczanska et al. 2013, 2016, 
IPCC 2019). Satellite remote sensing of global phyto-
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plankton blooms similarly suggests that the phyto-
plankton accumulation season is starting earlier and 
lasting longer (Friedland et al. 2018). 

High-latitude polar ecosystems are often treated as 
a single entity in global studies of phytoplankton phe-
nology characterized by short-duration, high-intensity 
summer phytoplankton blooms (Racault et al. 2012). 
Satellite-derived chl a in the Southern Ocean reveals 
increasing trends over time in offshore open ocean 
waters in most sectors (Del Castillo et al. 2019, Pinker-
ton et al. 2021). Indeed, the Intergovernmental Panel 
on Climate Change (IPCC 2019, p. 205) summarizes 
with ‘high confidence’ that changes in polar sea ice 
and ocean stratification are occurring, causing 
changes in the ‘timing, duration, and intensity of pri-
mary production.’ In a warming climate, start dates of 
the phytoplankton accumulation season at high lati-
tudes are predicted to shift earlier by about 5 d per 
decade (Friedland et al. 2018, Henson et al. 2018). 

However, polar seas with seasonal sea ice experience 
more variability than the broad high-latitude re gions 
examined in global phenology modeling studies. The 
marginal ice zone (MIZ) experiences the highest sea-
sonal variability in sea ice cover for a given polar 
region (Tréguer & Jacques 1992). In Antarctic waters, 
the MIZ comprises ~6 million km2 of about 19 million 
km2 of total Antarctic sea ice cover (32%) and makes 
up a majority of the sea ice cover for the West Ant -
arctic Peninsula (WAP) region (~60%) (Stroeve et al. 
2016, Vichi 2022). Sea ice variability in the MIZ is 
linked to variability in phytoplankton and krill popula-
tions; thus, this region plays an important role in sup-
porting the marine ecosystem throughout many 
trophic levels. The MIZ surrounding Antarctica ex-
periences some of the highest winds and waves on the 
planet, and it is here where the timing of sea ice retreat 
and advance, light availability, wind-driven mixing, 
bathymetric effects on mixing, and nutrient supply are 
highly variable over both space and time. Changes 
such as increased wind-driven mixing re sulting in re-
duced stratification early in the season can shift the 
timing of the start date of the phytoplankton accumu-
lation season later in the year, a scenario which has 
been observed in other polar seas with seasonal sea ice 
(Stabeno et al. 2001, 2012). 

In this paper, we explore the seasonal phenology of 
phytoplankton biomass at a sentinel region for polar 
ecosystem change: the marine system of the WAP 
(Henley et al. 2019). The WAP is often used as a case 
study for changing polar systems due to its declining 
seasonal sea ice, melting of nearby glaciers, exposure 
to high circumpolar winds, currents, and waves, a 
dynamic food web, and regionally relevant sinks for 

anthropogenic CO2 (Arrigo et al. 2008, Henley et al. 
2019). The WAP region is governed by the seasonal 
presence of sea ice, whose dynamics are driven by 
multiple climatic forcings (Stammerjohn et al. 2008, 
Meredith et al. 2017, 2021). High chl a concentrations 
at the surface depend in part on low wind speeds 
(Saba et al. 2014), as deeper mixing may result in both 
dilution and light limitation. Each spring season, sea 
ice melt leads to stratification, which allows for initia-
tion of the phytoplankton accumulation season 
(Moline 1998, Vernet et al. 2008, Carvalho et al. 2016, 
Schofield et al. 2018). Later in the summer season, gla-
cial melt can also sustain or intensify coastal stratifi-
cation, thus supporting or sustaining high phyto-
plankton biomass in surface waters (Dierssen et al. 
2002, Meredith et al. 2021). 

Most in situ observations in polar systems are col-
lected during the summer, limiting knowledge of 
 seasonal phenology. For example, January in situ 
observations show trends toward shallower summer 
mixed-layer depths (MLD), increased summer pri-
mary production, and enhanced summer carbon 
drawdown along the WAP (Schofield et al. 2018, 
Brown et al. 2019). However, phytoplankton dyna -
mics need to be examined throughout the polar sea-
son for a better understanding of ecosystem function 
and carbon cycling. Such phenology analysis allows 
for the evaluation of climatological changes in polar 
regions and for predicting impacts on food web 
dynamics. Previous time series analyses along the 
WAP with high temporal coverage (Saba et al. 2014, 
Kim et al. 2018, Brown et al. 2019, Thibodeau et al. 
2019, Cimino et al. 2023) are spatially limited to either 
the sampling grids of research vessels or point loca-
tions at coastal re search stations. Satellite remote 
sensing of ocean color provides the means to study 
phytoplankton dyna mics from September to April, 
with wide spatial coverage and a 25 yr time series 
(1997 to 2022). Ocean color remote sensing is inher-
ently limited by some factors, such as surface-only 
chl a estimates without depth-integrated biomass, 
chl a as an imperfect proxy for biomass, limited 
retrievals at high solar zenith angles, clouds, and the 
need to correct for atmo spheric and surface phenom-
ena that interfere with estimates of water-leaving 
radiance. Despite these limitations, remote sensing is 
an indispensable tool for ocean observing thanks to 
increased spatial and temporal coverage in polar 
regions with limited accessibility. Ocean color remote 
sensing in western Antarctica is useful for studying 
phytoplankton rather than other optically-active con-
stituents, since there are no major terrestrial sources 
of sediments (Pan et al. 2019) or colored dissolved 
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organic matter (Patterson 2000, Norman et al. 2011). 
Ocean color data are useful for the WAP region from 
1997 onward, beginning with the SeaWiFS sensor 
(see the Appendix for a list of abbreviations used in 
this paper). The earlier Coastal Zone Color Scanner 
(CZCS) (e.g. Montes-Hugo et al. 2009) is not appro-
priate for long-term analysis of polar regions, since 
spatial coverage is limited to the northern WAP, lim-
iting synoptic view of feature migration and correla-
tions with the migration of the seasonal sea ice mar-
gin (Figs. S1 & S2 in the Supplement at www.int-res.
com/articles/suppl/m734p001_supp.pdf). 

The objectives of this study were to (1) quantify the 
time series of satellite-derived surface chl a up to 
recent years, (2) illustrate spatial gradients and tem-
poral trends in chl a and its seasonal timing, and (3) 
identify long-term shifts in the timing of phenological 
events in the phytoplankton accumulation season 
along the WAP. Results show that the phytoplankton 
accumulation season is starting and peaking later 
over time throughout much of the WAP region, with 
decreased chl a in the spring season and increased chl 
a in the fall season in recent years. 

2.  METHODS 

2.1.  Study area 

The WAP region (80 to 55°W, 70 to 60°S) was ana-
lyzed, including both the offshore and shelf environ-
ments. Five ecoregions were used: the Southern Polar 
Front (SPF), the MIZ, the northern shelf, the mid-shelf, 
and the southern shelf (Fig. 1). The SPF corresponds to 

the Permanently Open Ocean Zone, which is consid-
ered an almost oligotrophic ocean experiencing light 
limitation due to high wind mixing and nutrient limita-
tion (Jeandel et al. 1998). The MIZ is influenced by the 
receding ice edge each spring and advancing ice edge 
each fall, and this ecoregion is more productive than 
the Permanently Open Ocean Zone but not as produc-
tive as the shelf and coast (Tréguer & Jacques 1992). 
The shelf, sometimes labeled the Coastal and Conti-
nental Shelf Zone, is considered the most productive 
region of the Southern Ocean, with large blooms oc-
curring over the course of the phytoplankton accumu-
lation season (Arrigo & McClain 1994, Smith et al. 
1996, Dierssen et al. 2000). We further divided the 
shelf into 3 ecoregions from north to south based on 
the phenology of bloom timing and seasonal sea ice re-
treat (Fig. 1). Thus, eco regions correspond to both 
bathymetric gradients (i.e. shelf vs. off-shelf) and the 
spatial gradients in the mean timing of bloom start 
dates. The line between the SPF and the MIZ approx-
imately corresponds to both the northern limit of the 
sea ice zone and the southern boundary of the 
Antarctic Circumpolar Current, known as the southern 
Antarctic Circumpolar Current front (Orsi et al. 1995, 
Martinson 2012, Chapman et al. 2020). 

2.2.  Satellite ocean color data 

2.2.1.  Satellite-derived chl a 

Satellite-derived chl a data were sourced from 
CMEMS GlobColour (Garnesson et al. 2019). This 
product is a merged multi-sensor data set using chl a 
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Fig. 1. West Antarctic Peninsula, with regions overlaid on (a) bathymetry and (b) mean start date of the phytoplankton accumula-
tion season 1997–2022. Months indicate the first day of each month (e.g. ‘S’ = 1 September). Regions include 1: Southern Polar 
Front, 2: marginal ice zone, 3: northern shelf, 4: mid-shelf, and 5: southern shelf. Gray indicates land, white indicates ice shelves. 
In (b), non-ice shelf areas that are colored white correspond with satellite data where <30% of daily scenes were present due to  

frequent presence of sea ice
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data from SeaWiFS (1997–2010), MODIS-Terra (2000–
present), MODIS-Aqua (2002–present), MERIS (2002–
2012), VIIRS-NPP (2012–present), VIIRS-NOAA20 
(2018–present), OLCI-S3A (2016–present), and OLCI-
S3B (2018–present), processed to a common spatial 
resolution of 4 km. Chl a from this record is a daily 
interpolated gap-filled Level-4 data product, flagged 
and processed as in Garnesson et al. (2019). Gap-
filled and non-gap-filled chl a concentrations were 
consistent with one another in the WAP region over 
the time series analyzed in this study (Fig. S3). The 
chl a algorithm in this data set is a global algorithm 
based on the tendency of phytoplankton to absorb 
comparatively more blue light relative to green 
(Gohin et al. 2002, Hu et al. 2012, Garnesson et al. 
2019). Merging of data from multiple sensors created 
some inconsistencies in the time series due to the 
addition of higher spatial resolution sensors such as 
MERIS and OLCI in later years (Van Oostende et al. 
2022). However, most of those inconsistencies occur 
in very nearshore waters due to the enhanced ability 
of the added sensors to observe specific geographi-
cal pixels. This data set (Turner 2024) is suitable for 
our analysis thanks to the broad spatial coverage of 
the ecoregions in this study, including mostly off-
shore waters not impacted by the addition of higher 
spatial resolution sensors. 

Global chl a algorithms are known to underestimate 
in situ chl a in the WAP region by a factor of 2 to 2.5 
due to a combination of pigment packaging, low par-
ticulate backscattering, and low concentrations of 
dissolved substances (Mitchell & Holm-Hansen 1991, 
Mitchell 1992, Dierssen 2000, Dierssen & Smith 2000, 
Kahru & Mitchell 2010, IOCCG 2015). To correct for 
the underestimation by global algorithms, we applied 
a fourth-order polynomial to the global chl a data set 
to match field data (Dierssen and Smith 2000). As 
shown in Figs. S4 & S5 in the Supplement, this correc-
tion is minimal at low chl a concentrations represen-
tative of offshore waters in the SPF, where the stand-
ard algorithms generally perform well (Dierssen 2000, 
Haëntjens et al. 2017). These corrections are con-
ducted to better reflect the range in chl a from shelf to 
open ocean in the WAP region. Because phenology 
analysis depends on the relative chl a rather than 
absolute chl a, and because the correction is consis-
tent throughout the satellite time series, it does not 
impact the analyses of chl a phenology over time. 

The use of satellite-derived surface chl a as a tool to 
study phytoplankton dynamics is useful in polar re -
gions despite some inherent limitations. Chl a is an 
imperfect metric for phytoplankton biomass, since 
the ratio of chl a to biomass can vary with phytoplank-

ton carbon, light, temperature, and nutrient concen-
trations (Cleveland et al. 1989, Babin et al. 1996, 
Geider et al. 1997, Barbieux et al. 2018). In some sys-
tems, chl a in the surface ocean may exhibit different 
patterns compared to vertically integrated phyto -
plankton biomass throughout the water column, as 
seen in the North Atlantic (Boss & Behrenfeld 2010). 
The relationship between surface and depth-integrated 
chl a is generally well constrained in the WAP region 
(Dierssen et al. 2000). 

2.2.2.  Satellite data availability 

Satellite data availability enables analysis over aus-
tral spring, summer, and early fall for areas that are 
generally free of sea ice during the summer season in 
most years (Fig. S6). Available data are deemed accu-
mulation season data since low light and under-sea-
ice data are unavailable in austral winter. Data are 
available for the entire WAP region from September 
to April, partially unavailable in May and August, and 
completely unavailable in June and July due to low 
light and ice cover (Fig. 2; Fig. S7). 

2.3.  Environmental data 

Long-term trends in environmental factors were 
analyzed in addition to chl a, including wind speed, 
photosynthetically active radiation (PAR), and sea 
surface temperature (SST). ERA5 reanalysis data 
were used to analyze trends in wind speed over time 
(Copernicus Climate Change Service 2018). Hourly 
wind speeds were calculated from hourly u- and v-
component velocities at 0.25° × 0.25° horizontal res-
olution at 10 m above Earth’s surface using wind 
speed = sqrt(u2 + v2). Hourly wind speeds were 
averaged to daily and monthly wind speeds. For 
wind, relevant data assimilated into the ERA5 wind 
product include satellite observations (infrared and 
microwave radiances, retrievals from radiance data, 
and scatterometer data) and in situ observations 
(ships, aircraft, buoys, radar, and radiosondes). Due 
to the known low quantity of in situ data and low 
reliability of satellite observations of the sea surface 
in the presence of seasonal sea ice, only ERA5 
reanalysis data in the offshore SPF ecoregion were 
analyzed (Fig. 1). PAR data were downloaded from 
NASA Ocean Color Web from SeaWiFS, MODIS-
Terra, and MODIS-Aqua (Frouin & Pinker 1995, 
Frouin et al. 2002, 2012) as a Level-3 daily product at 
9 km spatial resolution. This data set provides an 
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estimate of daily average PAR in Einstein m–2 d–1 
based on observed top-of-atmosphere radiances in 
in the 400–700 nm range that do not saturate over 
clouds. For years with multiple sensors in orbit at 
once (i.e. SeaWiFS, MODIS-Terra, and MODIS-Aqua 
for years 2002–2010), PAR data from all sensors 
were averaged for each day to create 1 average 
mapped file per day. Since PAR data from ocean 
color using this approach are only valid over dark 
waters and are invalid over sea ice as a result of the 
plane-parallel algorithm, only PAR data in the off-
shore SPF ecoregion were analyzed (Fig. 1). SST 
data were downloaded from the Global Ocean 
OSTIA Sea Surface Temperature and Sea Ice Repro-

cessed data set from CMEMS as a 
Level-4 daily product at 0.05° × 0.05° 
horizontal resolution (Good et al. 
2020). 

2.4.  Data analysis 

2.4.1.  Spatial and temporal 
 boundaries of analysis 

Spatially, analysis was performed 
only for ocean color data pixels where 
at least 30% of daily data were present, 
which removed noise by excluding 
locations covered by seasonal sea ice 
for the majority of the time series 
(Fig. S6). Temporally, data were ana-
lyzed by austral year, 1 July through 30 
June, to encompass the entire south-
ern hemisphere accumulation season 
rather than the boreal calendar year. 
The data set includes September 1997 
through August 2022. 

2.4.2.  Phenology metrics 

Analysis of changing timing of phyto -
plankton dynamics focused on the start 
date of the phytoplankton accumula-
tion season, referred to here as the 
‘start date.’ In addition to the start date, 
we examined the ‘peak date,’ i.e. the 
timing of the maximum concentration 
of chl a. While global studies often use 
bloom duration as a metric of phyto-
plankton phenology (Racault et al. 
2012, 2015, Friedland et al. 2018), the 

WAP region is unsuitable for the traditional definition 
of bloom duration. In many parts of the WAP, espe-
cially over the shelf, prolonged elevated chl a concen-
trations continue throughout the austral summer and 
fall (Kim et al. 2018). High chl a concentrations, while 
variable, can persist into the fall season up until low 
light and sea ice advance render satellite observations 
unusable. Thus, instead of duration, we focused on 
start date and peak date as the most suitable metrics. 
Each of these phenology metrics was calculated for 
each year in the 25 yr record as day of austral year from 
1 July to 30 June. The metrics start date and peak date 
were therefore truly temporally independent from 
year to year, representing individual annual values in 
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Fig. 2. Monthly climatologies of chlorophyll a (chl a), showing the average of 
1997–2022 for each month. Climatologies were calculated for spatial points 
where >75% of data were available (>18 of 24 years). White space in some 
months indicates where satellite data are unavailable due to sea ice and low 
light. Black dotted line indicates the continental shelf break (1000 m isobath)
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units of day of year (DOY). Decadal trends were com-
pared using the austral years (July to June) 2000–2001 
through 2010–2011 versus 2011–2012 through 2021–
2022. These sets of years were chosen based on 
change-point analysis for the start date and peak date 
time series for each region (Killick et al. 2012). 
Change-point analysis showed distinct change-points 
in the year 2012 for the MIZ, northern shelf, and mid-
shelf ecoregions (Figs. S8 & S9). 

2.4.3.  Phenology metric sensitivity analysis 

There are several different ways of looking at 
changes in the phenology of phytoplankton blooms 
(Brody et al. 2013, Thomalla et al. 2015). We tried 
multiple methods (Fig. S10) and chose the threshold 
approach, because it showed the clearest spatial gra-
dient in the average timing of the start date across all 
years and fell in the middle of the distribution of all 
indices in terms of resulting trends over time 
(Fig. S10). The threshold approach defines the start of 
the phytoplankton accumulation season as the day 
when chl a becomes greater than the threshold value 
equal to the long-term median plus 5% (Siegel et al. 
2002, Racault et al. 2012) and remains above that 
threshold value for 5 consecutive days. 

For a given location in the waters west of the Ant-
arctic Peninsula, a typical year begins with low chl a 
when satellite data first become available, then in -
creases to a peak chl a value in mid-summer, then de -
creases with shortening day length and sea ice 
advance. However, some locations during some years 
experienced ‘no bloom’ as defined by never exceed-
ing 2.5 times the long-term threshold value (where the 
threshold value is the long-term median plus 5%, i.e. 
0.4 mg m–3 for the mid-shelf). Therefore, additional 
quality control was performed by removing years 
without a substantial phytoplankton bloom from all 
phenology analyses. This quality control measure 
had only a small effect, since 19 of 25 years experi-
enced a substantial bloom for >90% of the ocean area 
analyzed, and even the year with the largest number 
of ‘no bloom’ locations (1998) showed substantial 
blooms in 77% of pixels (Fig. S11). 

2.5.  Statistical analysis 

Time series analysis was performed for the WAP 
region as a whole using mapped long-term trends at 
each x,y pixel location and for separate ecoregions. 
Ecoregion time series were created by averaging the 

pixels (geometric mean) within the polygons shown 
in Fig. 1. For all statistical tests, we used a signifi-
cance threshold of 0.05. 

To determine the significance of decadal differ-
ences in the daily time series, we applied a Kruskal-
Wallis test, i.e. non-parametric ANOVA, ‘kruskal -
wallis’ function in MATLAB 9.6.0 R2019a (The 
MathWorks Inc. 2019) to compare each DOY mean 
chl a for 2001–2011 to the same DOY mean chl a for 
2012–2022 in each ecoregion. The application of a 
non-parametric test was appropriate since the distri-
butions of decadal chl a by DOY (e.g. chl a for 
1 December in the northern shelf across all years in a 
given decade) were non-normal. The null hypothesis 
is that both decades have the same center parameter 
for their distribution. 

To assess the significance of decadal differences in 
start date and peak date by ecoregion, we calculated 
the spatial mean of each metric in each ecoregion 
during each year to find the decadal means and 
medians, then compared decadal medians using non-
parametric Kruskal-Wallis tests. Like the test above, 
the null hypothesis is that both decades have the 
same center parameter for their distribution. The 
application of a non-parametric test was appropriate 
since decadal start dates and peak dates by ecoregion 
(e.g. northern shelf mean start date across all years in 
a given decade) were not normally distributed. 

Mapped long-term trends in each phenology metric 
and in month-wise chl a were calculated using Theil-
Sen non-parametric estimates of slope over time (Gil-
bert 1987) at each x,y location, using the ‘TheilSen’ 
function in MATLAB R2019a (Danziger 2024). The sta-
tistical significance of these mapped trends was tested 
at each x,y location using a non-parametric Mann-
Kendall test of monotonic trends (Mann 1945, Kendall 
1975), with the Climate Data Toolbox ‘mann_kendall’ 
function in MATLAB R2019a (Greene et al. 2019). The 
application of a non-parametric test was appropriate 
since the distributions of phenology metrics (e.g. start 
date and peak date for all years) and month-wise chl a 
(e.g. October chl a for all years) were non-normal. For 
mapped trends, the null hypothesis is that there is no 
trend in the data over time. No detrending was per-
formed on pheno logy metric time series, because as 
single DOY values, these were considered independ-
ent data points from year to year. No detrending was 
performed for month-wise chl a, as each month’s mean 
chl a was considered an independent data point from 
year to year. 

To determine trends by ecoregion, regionally aver-
aged monthly chl a and phenology metrics (1 value 
per year) were tested for significant trends over time 
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using a non-parametric Theil-Sen slope test. Detrend-
ing was performed to de-seasonalize the overall long-
term monthly chl a time series (Fig. S12) using the 
Climate Data Toolbox ‘deseason’ function in MAT-
LAB R2019a (Greene et al. 2019), which detrends to 
isolate the seasonal component, then subtracts the 
seasonal component of the time series from the origi-
nal data (Fig. S12). No detrending was performed on 
phenology metric time series, because as single DOY 
values, these were considered independent data 
points from year to year. Theil-Sen non-parametric 
estimates of slope were performed on each ecore-
gion’s de-seasonalized chl a to calculate trends. The 
significance of the trends was assessed with Mann-
Kendall tests. The application of a non-parametric 
test was appropriate since both the de-seasonalized 
monthly chl a (e.g. northern shelf mean chl a during 
every month over the entire time series) and phenol-
ogy metrics (e.g. northern shelf mean start date and 
peak date across all years) were not normally distrib-
uted. Like the test above, the null hypothesis is that 
there is no trend in the data over time. 

For environmental data, month-wise trends over 
time and decadal comparisons followed the same 
statistical methods used for chl a. For wind speed, 
long-term trends in month-wise wind speed were 
calculated using Theil-Sen non-parametric estimates 
of slope over time at each x,y location in m s–1 yr–1. 
Each month’s relative trend was calculated as the 
trend (m s–1 yr–1) relative to the long-term mean 
wind speed (m s–1) at each x,y location for each 
month. The significance of month-wise trends was 
assessed using Mann-Kendall tests. Because trends 
were calculated for each month of 
the year, data were purposefully not 
de-seasonalized prior to trend analy-
sis. For PAR data and SST data, 
month-wise trends over time were 
calculated using Theil-Sen non-para-
metric estimates of slope over time at 
each x,y location, and the significance 
of those trends was assessed using 
Mann-Kendall tests. To determine the 
significance of decadal differences in 
the daily time series of PAR and SST, 
we applied Kruskal-Wallis tests to 
compare each DOY mean for 2001–
2011 to the same DOY mean for 
2012–2022 for each ecoregion. Since 
we analyzed the seasonal pattern for 
each decade, we purposefully did not 
de-seasonalize the data prior to deca-
dal comparisons. 

3.  RESULTS 

3.1.  Patterns in seasonal chl a timing 

Monthly patterns in chl a show an overall offshore-
to-onshore shift in the location of high chl a from Sep-
tember to February (Fig. 2). Offshore, the months of 
October to December show the highest chl a, while 
over the shelf and coast, January to March experience 
the highest chl a. During the summer and fall (Janu-
ary to April) there is a strong north-to-south gradient 
of increasing chl a with latitude. The highest chl a 
concentrations occur over the southern shelf during 
the summer months of January and February (Fig. 2). 

Phenology metrics, including long-term mean start 
date and peak date, varied with latitude and distance 
from shore (Fig. 3, Table 1). The long-term mean tim-
ing of the start of the accumulation season showed a 
smooth spatial pattern from offshore to onshore and 
from north to south, with start dates for the SPF, MIZ, 
northern shelf, mid-shelf, and southern shelf occur-
ring in September, October, November, December, 
and January, respectively (Fig. 3a, Table 1). For peak 
date, the long-term mean was characterized by similar 
spatial patterns, although peak dates lagged start 
dates by approximately 1 to 2 mo. Peak dates ranged 
from early December in the offshore SPF to mid-Feb-
ruary over the southern shelf (Fig. 3b, Table 1). 

Decadal seasonal cycles of daily chl a shifted later 
in the season for most ecoregions (Fig. 4, Table 2). In 
the MIZ, the phytoplankton accumulation season 
started later and ended earlier in 2012–2022 com-
pared to 2001–2011, shortening the length of the 
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Fig. 3. Long-term mean phenology metrics: (a) start date of the phytoplankton 
accumulation season via the threshold method, (b) peak date (date of maxi-
mum chl a concentration). Lettering on color bars indicates the first day of each 
month (e.g. S = 1 September). Black dotted line indicates the continental shelf  

break (1000 m isobath)
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Ecoregion                               Start date        SD                   Peak date      SD                                  Chl a (mg m–3) 
                                                                                                                                                       Mean               SD                  Max.               SD 
 
Southern Polar Front              5 Sep              8                         8 Dec           13                     0.35                0.04                  1.56               0.33 
Marginal ice zone                   18 Oct           21                       17 Dec          21                     0.61                0.14                  2.87               0.69 
Northern shelf                         13 Nov            8                        22 Jan          13                     0.84                0.21                  3.57               1.03 
Mid-shelf                                   13 Dec           11                       29 Jan          10                     1.24                0.34                  5.34               1.66 
Southern shelf                           2 Jan              6                        12 Feb           9                      1.47                0.54                  6.01               2.76

Table 1. Regional long-term mean phenology metrics. Standard deviations of start date and peak date are in units of days

Fig. 4. Seasonal cycles of daily chl a concentration for 2 decades: 2001–2011 (blue) vs. 2012–2022 (magenta). Dotted black line in-
dicates the threshold value (long-term median chl a + 5%) for each region used to calculate start date. Black circles at lower edges 
of plots indicate where the difference between decades was statistically significant (Kruskal-Wallis test, p < 0.05). Dates refer to  

the first day of each month (e.g. ‘Aug’ is 1 August). Regions shown in map inset overlay long-term mean chl a concentration
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accumulation season (Fig. 4b). The mid-shelf experi-
enced the largest shift toward later seasonal timing, 
with the start date becoming later by 19 d from one 
decade to the next (Fig. 4d). The northern shelf and 
southern shelf ecoregions showed slightly later tim-
ing of chl a, with start dates up to 2 wk later in 2012–
2022 than in 2001–2011. In the fall season, the stron-
gest shifts toward higher fall chl a occurred in the SPF 
(Fig. 4a) and the northern shelf (Fig. 4c). 

Spatially, from 2001–2011 to 2012–2022, the start 
date of the phytoplankton accumulation season be -
came later along the shelf break and slope (Fig. 5), 
with decadal differences of to up to 30 d later over 
parts of the shelf, just offshore of the shelf break, and 
in most of the MIZ (Fig. 5c). In the far offshore envi-
ronment, start dates shifted slightly earlier in recent 
years compared to past years (Fig. 5c). Peak date by 
decade also shifted later in the season (Fig. 5), with 
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Ecoregion                                                   Start date                                                                          Peak date 
                                              Median            Median        Difference       p                    Median            Median        Difference       p 
                                           2001–2011      2012–2022            (d)                                  2001–2011      2012–2022            (d)                 
 
Southern Polar Front         3 Sep                 1 Sep                 –2          0.880                  5 Dec               17 Dec                 12           0.257 
Marginal ice zone*            9 Oct                26 Oct                 17          0.016*                7 Dec                 5 Jan                   29          0.003* 
Northern shelf*                 10 Nov             20 Nov                 10          0.010*               17 Jan                2 Feb                  16          0.034* 
Mid-shelf*                            7 Dec               26 Dec                 19          0.013*               20 Jan               11 Feb                 22           0.059 
Southern shelf                    27 Dec                9 Jan                   13           0.151                  9 Feb                16 Feb                  7            0.364

Table 2. Decadal medians and differences between decades for regionally averaged phenology indices. Statistically significant  
trends (Kruskal-Wallis) are marked with an asterisk (*p < 0.05)

Fig. 5. Decadal mean start dates, peak dates, and decadal differences (days). (a) Mean start date 2001–2011, (b) mean start date 
2012–2022, (c) difference (2012–2022 mean start date minus 2001–2011 mean start date), (d) mean peak date 2001–2011, (e) 
mean peak date 2012–2022, and (f) difference (2012–2022 mean peak date minus 2001–2011 mean peak date) (days). In (c) and 
(f), blue indicates earlier dates and red indicates later dates in recent years. Black dotted line indicates the continental shelf  

break (1000 m isobath)
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decadal differences of up to 40 d later in 2012–2022 
compared to 2001–2011 (Fig. 5c). The shift to later 
peak dates was spatially most remarkable along and 
just offshore of the continental shelf break (Fig. 5d–f). 

In terms of decadal differences by ecoregion, both 
start dates and peak dates shifted later in some ecore-

gions, yet other shifts were not statistically significant 
(Table 2, Figs. 6 & 7). Start dates were significantly 
later in recent years compared to past years in the MIZ 
(Kruskal-Wallis test; chi squared = 5.85, p = 0.016, 
df = 1), the northern shelf (chi squared = 6.61, p = 
0.010, df = 1), and the mid-shelf (chi squared = 6.22, 
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p = 0.013, df = 1) by 10 to 19 d (Table 2, Fig. 6). Peak 
dates were significantly later in 2012–2022 compared 
to 2001–2011 in the MIZ (chi squared = 8.69, p = 
0.003, df = 1) and the northern shelf (chi squared = 
4.48, p = 0.034, df = 1) by 16 and 29 d, respectively 
(Table 2, Fig. 7). In terms of long-term trends by ecore-
gion, peak date showed the strongest trends toward 
later timing in the SPF and MIZ (Table 3), becoming 
1 d later per year in the SPF (Theil-Sen slope; Mann-
Kendall significance test; p = 0.007) and 1.5 d later per 
year in the MIZ (p = 0.018). 

In terms of mapped long-term trends, the start date 
of the accumulation season showed diverging trends 
with low levels of statistical significance (Fig. 8). For 
the offshore environment (west of 69°W and north of 
63°S), there were isolated patches where start dates 
became earlier over time (Fig. 8a). However, much of 
the WAP region showed start dates getting later over 
time (i.e. 49% of the study area; Fig. 8a). Peak dates 
generally shifted later in the season over time, with an 

especially strong trend in the MIZ just offshore of the 
continental shelf break and slope north of 63°S lati-
tude (Fig. 8b). 

3.2.  Overall satellite-derived chl a  
magnitude trends 

Long-term trends from 1997 to 2022 in chl a concen-
tration were on the order of ±0.01% yr–1 with high 
annual and interannual variability (Fig. S12), unless 
resolved on monthly timescales (Fig. 9). By ecore-
gion, trends over time were minimal with the excep-
tion of the SPF (Table 4). Chl a increased significantly 
over time in the SPF (Theil-Sen slope; Mann-Kendall 
significance test; 0.03% yr–1; p = 0.004) from 1997 to 
2022 (Table 4). All other ecoregions showed minimal 
chl a trends over time (up to ±0.02% yr–1 at most) 
with no statistical significance (p > 0.198) (Table 4). 

On monthly timescales, long-term chl a trends over 
time were larger in magnitude, decreasing over time in 
spring (October to November) and increasing over 
time in summer and fall (January to April) (Fig. 9). 
 October and November showed evidence of strongly 
decreasing chl a in the offshore to outer continental 
shelf regions, reaching –4 and –5% yr–1, respectively 
(Fig. 9b,c). January, February, March, and April all 
showed slight increasing trends in chl a on the order of 
1 to 4% yr–1 (Fig. 9e–h). In summer and fall, statisti-
cally significant increases were located mostly offshore 
of the continental shelf. Nearshore waters showed 
more variability in the direction of the trends from 
January through April. 

3.3.  Trends in environmental 
 variables 

Wind speed trends for 1997 to 2022 
in individual months showed different 
long-term trends in separate parts of 
the seasonal cycle. Wind speed in -
creased over time most notably for the 
month of November (Fig. 10). Spring 
months (September, October, and No-
vember) showed increasing wind speed 
over time, whereas the summer months 
December and January showed slight 
decreasing trends in wind speed. Fall 
months displayed mixed trends, with 
February and March experiencing in-
creasing wind speed over time while 
April showed decreasing wind speed 
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Ecoregion                       Start date        Peak date 
                                               Trend        p            Trend       p 
                                             (d yr–1)                    (d yr–1) 
 
Southern Polar Front*   –0.435    0.293        1.048   0.007* 
Marginal ice zone*           0.595    0.141        1.548   0.018* 
Northern shelf                    0.381    0.293        0.429    0.293 
Mid-shelf                             0.848    0.118        1.037    0.183 
Southern shelf                    0.679    0.154        0.434    0.559

Table 3. Trends in regionally averaged phenology indices. 
Statistically significant trends (Mann-Kendall) are marked  

with an asterisk (*p < 0.05)

Fig. 8. Trends in (a) start date and (b) peak date of the phytoplankton accumu-
lation season over time, in units of days per year (Theil-Sen slope). Red (blue) 
indicates a later (earlier) date over time. Black stippling indicates areas where 
trends are statistically significant (p < 0.05; Mann-Kendall). Black dotted line  

indicates the continental shelf break (1000 m isobath)
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over time (Fig. 10). While there was an 
overall in crease in wind speed from 
2001–2011 to 2012–2022, especially in 
the offshore environment, wind direc-
tion did not show a substantial change 
and remained predominantly north-
westerly throughout the time series 
(Fig. S13). 

Analysis of PAR and SST data for 
1997–2022 did not reveal meaningful 
trends. We found that the seasonal pat-
terns in PAR were not significantly dif-
ferent be tween decades for any ecore-
gion (Fig. S14). By month, trends in 
PAR showed slight decreases over time 
(Fig. S15), yet the seasonality of the 
PAR de creases did not correspond 
with the seasonality of the chl a trends 
observed (Fig. 9). Likewise, no signifi-
cant difference was seen in the sea-
sonal cycle of SST be tween decades 
(Fig. S16). By month, SST trends 
showed Septembers becoming slightly 
warmer, with no other significant 
trends in any other month in any 
ecoregion (Fig. S17). 

4.  DISCUSSION 

4.1.  Assessing seasonality of 
 phytoplankton 

Although the ‘spring bloom’ has 
been characterized for nearly 100 yr 
(Gran & Braarud 1935), studies of 
phyto plankton phenology in the glo -
bal ocean differ on the most represen-
tative definition of the start date ac -
cording to different metrics of bloom 
initiation. Most biomass-based esti-
mates customarily point to the spring 
season as the start of the phytoplank-
ton accumulation season rather than 
winter, varying depending on nutrient 
availability, latitude, and climatologi-
cal factors. Often, start date co-occurs 
with the physical stratification of the 
water column (Sverdrup 1953, Siegel 
et al. 2002). Some argue that the sea-
sonal cycle of phytoplankton growth 
truly begins in winter when conditions 
are well-mixed, according to the dilu-
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Fig. 9. Trends in chl a by month relative to the long-term mean chl a for each spa-
tial point for each month over the 25 yr time series (Theil-Sen slope). Black stip-
pling indicates areas where trends are statistically significant (p < 0.05; Mann-
Kendall). Black dotted line indicates the continental shelf break (1000 m isobath)
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tion hypothesis (Behrenfeld & Boss 2014). Due to lim-
ited information about loss rates (i.e. grazing, viruses, 
sinking) over the time and space scales needed for 
this analysis, in this paper we focus on phytoplankton 
accumulation, the seasonal period of increasing 
phytoplankton biomass (as measured by surface chl a 
concentration) when the average phytoplankton 
mass-specific loss rates are smaller than growth rates 
(Evans & Parslow 1985, Banse 1992, Behrenfeld & Boss 
2018, Arteaga et al. 2020). Many studies also calculate 
the timing of the phytoplankton accumulation season 
start date based on biomass increase, such as the date 
when chl a rises above a pre-defined threshold value 
(Siegel et al. 2002, Racault et al. 2012). Other ap -

proaches use the timing of the peak in the daily rate of 
change, the date when the cumulative sum of chl a 
rises above a certain value, and the date of the largest 
step change in the cumulative sum of anomalies in chl 
a (Brody et al. 2013, Thomalla et al. 2015). Through a 
sensitivity analysis evaluating a variety of published 
metrics, we demonstrate that our methods and con-
clusions applying the threshold metric are robust 
(Fig. S10). 

4.2.  Decadal shifts in bloom phenology 

Phytoplankton accumulation season start dates and 
peak dates are shifting later in the season, and chl a is 
remaining higher for longer into the fall season 
(Figs. 4, 5, & 9). Start date is occurring later over time 
especially in the MIZ and over the shelf (Figs. 4b, 5c, 
& 6), and peak date is becoming later over time espe-
cially just offshore of the shelf break (Figs. 5f, 7, & 8). 
Decadal differences may be muted slightly (Figs. 6 & 
7) when averaged over space and time, as the averag-
ing likely masks the strong trends seen along the con-
tinental shelf break in the MIZ (Fig. 5). Chl a trends 
by month further support the shift toward later timing 
each season, as October and November show long-
term decreases in chl a, while January to April show 
long-term increases in chl a (Fig. 9). Although global 
climate models predict earlier spring blooms in polar 
regions, we saw a shift toward later spring start dates 
and later summer peak dates over time in the WAP 
region. 

While the timing of the phytoplankton accumula-
tion season is generally shifting later, by ecoregion, 
phenology is trending in mixed directions. Our re -
sults reveal that offshore open-ocean spring blooms 
are shifting earlier while blooms in ice-associated 
eco regions shift later. These results are not mutually 
exclusive, and both can occur simultaneously. The 
open ocean environment of the SPF is very different 
from the MIZ and shelf, since the latter environments 
experience sea ice coverage for a substantial portion 
of the year. The different level of exposure to sea ice 
may contribute to the different trends in phytoplank-
ton phenology for the open-ocean environment com-
pared to the ice-influenced ecoregions. These diverg-
ing trends represent a temporal widening in the 
bloom timing between the open-ocean environment 
and the ice-influenced environment. If this diver-
gence continues in future years, ecological con-
sequences could further differentiate these 2 systems 
as the effects of the shifting bloom timing propagate 
throughout the marine food web. 
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Ecoregion                    Monthly chl a 
                                                  Trend      Relative trend   p 
                                          (mg m–3 yr–1)     (% yr–1) 
 
Southern Polar Front*       0.00007            0.02      0.0004* 
Marginal ice zone            –0.00002         –0.003     0.743 
Northern shelf                  –0.00007          –0.01        0.198 
Mid-shelf                            –0.00009         –0.009     0.355 
Southern shelf                    –0.0001          –0.009     0.227

Table 4. Trends in regionally averaged, de-seasonalized 
monthly chlorophyll a (chl a). Statistically significant trends  

(Mann-Kendall) are marked with an asterisk (*p < 0.05)
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4.3.  Potential mechanisms for seasonal shifts 

Possible drivers behind observed seasonal shifts in 
timing include changes in wind speed, cloud cover, 
temperature, and sea ice dynamics. Wind speed is the 
most likely mechanism for the observed change in 
spring start dates (Fig. 10). A long-term increase in 
wind mixing has likely decreased early-season water 
column stability, suppressing phytoplankton accumu-
lation (Fig. 11). Other available environmental data 
(i.e. PAR, SST) cannot explain the patterns observed in 
shifting chl a phenology. 

4.3.1.  Increased spring wind speed 

Wind speed trends for 1997–2022 in individual 
months support the idea that enhanced winds could 
suppress an early spring bloom in the WAP. Wind 
speed is increasing over time for the month of 
November (Fig. 10), concurrent with October and 
November showing later phytoplankton accumula-
tion season start dates (Fig. 9). Our observations of 
increasing wind speed are consistent with other find-
ings that spring (September–November) wind speed 
is increasing over time for the broader West Antarc-
tica sector of the Southern Ocean (Yu et al. 2020). Due 
to increased spring wind speeds in recent years, sea-

sonal water column stratification from sea ice melt 
may not be occurring early enough to support an 
early spring bloom. Although there is evidence of a 
shallowing summer MLD over time based on the 
month of January (Brown et al. 2019), it is neverthe-
less possible that the onset of the spring MLD shal-
lowing is now happening later in the season each 
year. For the WAP, as the system progresses toward 
lower sea ice extent and shorter sea ice duration, wind 
mixing may be possible throughout more of each year 
in a low-ice state. A similar relationship between ice 
retreat, high wind speeds, and later bloom initiation 
was seen in the Bering Sea, a polar system experienc-
ing long-term declines in seasonal sea ice. In years 
with early sea ice retreat (boreal early spring, before 
mid-March), the spring phytoplankton bloom was 
delayed until the water columns stratified with warm-
ing air temperatures and in creased sunlight (Stabeno 
et al. 2001, 2012). 

We developed a conceptual diagram for the differ-
ence between past conditions and recent conditions in 
the MIZ in spring to contextualize our results (Fig. 11). 
In spring, in the MIZ, the past had lower wind speeds, 
resulting in a shallower MLD. Light-limitation depth 
in this conceptual diagram is illustrated as a range of 
depths falling be tween the shallower critical depth 
definition of Sverdrup (1953) with a liberal compensa-
tion irradiance, and a more conservative deeper light-
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Fig. 11. Conceptual diagram illustrating past conditions vs. present conditions in the marginal ice zone west of the Antarctic Pen-
insula in the spring season (October to November). Spring conditions are inherently light-limited due to low solar zenith angles 
(SZA). Past conditions with lower wind speeds and shallower mixed layer depth (MLD) provided more favorable conditions for  

spring surface phytoplankton accumulation compared to present conditions
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limitation depth corresponding to a smaller compen-
sation irradiance (Geider et al. 1986, Behrenfeld & 
Boss 2018). With increased wind speeds under present 
conditions, MLD deepens. Increased spring wind 
speeds over time are especially prevalent in the month 
of November (Fig. 10). However, we found no long-
term change in PAR (Figs. S14 & S15). Spring con-
ditions are inherently light limited due to high solar 
zenith angles at these high latitudes. At the same 
spring light levels, with the MLD deepening due to 
higher wind speeds and less water column stability, 
phytoplankton are likely more light-limited under 
present conditions compared to the past. 

4.3.2.  Other environmental data fail to explain 
seasonal chl a shifts 

Other potential mechanisms for later start dates in-
clude (1) a reduction in PAR due to increased cloud 
cover or (2) a shift in SST. Previous studies have shown 
evidence of a long-term increase in cloud cover and 
precipitation over the WAP (Kirchgäßner 2010, 2011, 
Datta et al. 2019, Sato & Simmonds 2021). Cloudier 
conditions with lower PAR would further limit an ear-
lier start to the phytoplankton accumulation season if 
combined with enhanced wind mixing. Temperature 
acts as a major control on phytoplankton phenology in 
the global ocean, including the growth preference for 
different species and the length of the phytoplankton 
accumulation season in different ocean biomes (Ra-
cault et al. 2012, Poloczanska et al. 2016, van Leeuwe et 
al. 2020). Shifts in SST could therefore theoretically 
alter the start date and peak date of the accumulation 
season. However, according to our analysis, long-term 
change in the seasonal timing of PAR (Figs. S14 & S15) 
and SST (Figs. S16 & S17) are not driving factors for the 
observed shifts in chl a phenology. 

One final potential mechanism for later phytoplank-
ton timing may be sea ice decline. A decrease in sea-
ice-melt-induced water column stability would sup-
press spring phytoplankton accumulation. How ever, 
this sea ice explanation may be confounded by other 
factors. Venables et al. (2013) presented evi dence that 
the timing of bloom initiation in the WAP follows light 
availability rather than sea ice retreat, and that low- 
and high-ice years showed similar bloom initiation 
dates. Our results support this idea, as the progression 
toward later start dates is not clearly mirrored by a pro-
gression toward later sea ice retreat over the same set 
of corresponding years (Fig. S18). It is possible that the 
lack of correlation be tween spring chl a trends and sea 
ice trends is due to the potential that satellites now 

miss the earliest ice-edge bloom. In slope and offshore 
waters, the ice-edge bloom occurred later in the 
season in past decades. In recent years, if the ice-edge 
bloom is occurring in late winter or early spring before 
satellites have sufficient sun angle to collect reliable 
data, e.g. August (Fig. 2), satellites cannot capture the 
earliest bloom. In that case, our results indicate that 
the non-ice-edge bloom is beginning later over time 
(Fig. 4), implying that the later phytoplankton accu-
mulation timing is not directly associated with changes 
in sea ice dynamics. Fluctuations in sea ice dynamics 
are linked to oscillations of the Southern Annular 
Mode (SAM) and changes in wind speed and direction 
(Stammerjohn et al. 2003, 2008, Turner et al. 2013). 
Our results show increasing wind speed over the off-
shore waters from the northwest, consistent with a 
long-term trend toward a positive SAM, without a con-
current change in wind direction (Fig. S13). As the re-
gion experiences future shifts in sea ice extent and du-
ration, future interactions between the SAM, wind 
speed, sea ice, and phytoplankton merit further study. 

4.4.  Ecological impacts of shifting phenology 

Phytoplankton represent the base of this dynamic 
food web; thus, shifts in phytoplankton seasonal tim-
ing may impact the feeding, migration, and breeding 
behaviors of higher trophic level organisms. The MIZ 
provides critical habitat for krill, fishes, seabirds, 
pinni peds, and cetaceans. While krill may have the 
ability to shift their phenology in response to interan-
nual variability in environmental condi tions (Conroy 
et al. 2023), the relative abundance of other taxa such 
as salps and pteropods can en hance grazing pressure 
on phytoplankton (Bernard et al. 2012). Zooplankton 
grazing can act as an im portant control on phyto-
plankton bloom duration as seen in other parts of 
coastal Antarctica (Kauko et al. 2021), and thus ef -
fects of changes in grazing on phytoplankton pheno -
logy in the WAP region merit further study. Changing 
phenology at the base of the food web could ad di -
tionally disrupt the life history strategies of keystone 
species such as Antarctic silver fish, Adélie penguins, 
and humpback whales (Fraser et al. 1992, Saba et al. 
2014, Weinstein & Fried laender 2017, Cimino et al. 
2019, 2023, Henley et al. 2019, Corso et al. 2022). 

The results of the present study suggest that start 
dates and peak dates of the phytoplankton accumula-
tion season are occurring later in the MIZ and that fall 
phytoplankton biomass is persisting later in the sea-
son over time over the northern continental shelf. 
Spring shifts and fall shifts may have different eco-
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logical implications. In spring, overall the WAP eco-
system is less ‘predictable’ during years with earlier 
spring sea ice retreat when the timing of phenological 
events throughout the food web is more diverse (i.e. 
higher variability in timing) (Cimino et al. 2023). This 
implies that as the system experiences further sea ice 
decline in future years, the timing of events in spring 
may become increasingly variable. In fall, higher chl a 
concentrations in recent years (Figs. 4 & 9) could pro-
vide a sustained food source for zooplankton and 
higher trophic levels later into the season than in past 
years. This shift toward a highly productive fall sea-
son in recent years could have implications for higher 
trophic level organism life history strategies. 

4.5.  Impact on annual carbon uptake 

Results imply that annual biological carbon uptake 
may not be changing substantially over time based on 
1997–2022, because both spring and fall processes 
are shifting later in the season and the overall trend in 
chl a is minimal. While the timing of events each sea-
son is shifting later in the season over time, the total 
magnitude of chl a is only minimally changing over 
time (Fig. S9). In the middle of the austral summer, 
the generally increasing chl a trend observed in Janu-
ary in the present study (Fig. 9e) corresponds with the 
results of Brown et al. (2019) showing increasing in 
situ chl a based on data collected during summer 
months. Furthermore, the statistically significant 
chl a increases in the SPF (Table 4) align with the 
overall ‘greening’ of the Southern Ocean observed by 
Del Castillo et al. (2019) and Pinkerton et al. (2021). 
This offshore environment is quite different from the 
coastal WAP ecoregions in that it is typically defined 
as a high nutrient–low chlorophyll ecosystem and is 
considered to be an oligotrophic area (Tréguer & 
Jacques 1992), with long-term mean chl a concentra-
tions ≤0.4 mg m–3 (Fig. S12). The results of the pre-
sent study show smaller-magnitude chl a trends than 
those presented by Montes-Hugo et al. (2009), which 
likely had significant biases using the older CZCS 
data (Figs. S1 & S2). Generally, small-magnitude 
changes in chl a suggest that despite the warming 
temperatures and generally lower sea ice conditions 
compared to the past, the WAP is not experiencing 
long-term declines in phytoplankton biomass. 

Changes in the timing of the phytoplankton accu-
mulation season may affect the timing and magni-
tude of biological CO2 uptake. Biological production 
drives variability in air–sea CO2 exchange along the 
WAP (Carrillo et al. 2004, Eveleth et al. 2017). Since 

the mid-2000s, several studies utilizing pCO2 obser-
vations have suggested a strengthening of Southern 
Ocean CO2 uptake (Xue et al. 2015, Landschützer et 
al. 2015, Munro et al. 2015b). However, the seasonal 
timing of when this strengthening is occurring is still 
unknown. Our results suggest that austral fall may be 
experiencing higher chl a concentration than in the 
past (Figs. 4 & 9), possibly strengthening CO2 uptake 
in the fall months. Overall, the amplitude of the sea-
sonal cycle in surface pCO2 is small, because the ther-
mal and biological components of the seasonal cycle 
balance one another (Munro et al. 2015a). This sug-
gests that at the seasonal scale, impacts of warm 
summer temperatures on carbon uptake are balanced 
by biological CO2 uptake. Phytoplankton phenology 
shifts show later spring start dates and higher fall 
chl a, but this shift is seen in the timing of the biolog-
ical carbon uptake rather than the magnitude. The 
connection between chl a and carbon cycling de -
pends on many factors other than the magnitude of 
the bloom or its timing (Henley et al. 2020). For exam-
ple, chl a often increases before phytoplankton car-
bon in the Southern Ocean spring bloom (Vives et al. 
2023). Whether there has been a change in the total 
annual carbon uptake based on changing chl a timing 
remains to be seen and merits further study. Our re -
sults imply that phytoplankton biomass is not chang-
ing in the long term despite phenological shifts to -
ward later start date in spring and higher chl a in fall. 

4.6.  Future outlook 

Changing chl a phenology may relate to changing 
phytoplankton community composition. Although 
data from Palmer Station (in the mid-shelf ecoregion 
in this study) show diatoms as the first species to 
bloom (Nardelli et al. 2023), other studies find that the 
haptophyte Phaeocystis antarctica is the dominant 
first bloomer, not diatoms, especially in offshore 
waters from the continental shelf break outwards 
(Arrigo et al. 2017, Joy-Warren et al. 2019). Because 
the strongest shifts in the timing of start date and 
peak date are occurring along the continental shelf 
break in our results (Fig. 5), it is possible that these 
changes are affecting haptophytes, but more work is 
needed to discern phytoplankton species with tempo-
ral coverage over the entire season. Future work will 
explore algorithms to leverage upcoming hyperspec-
tral satellite missions (Dierssen et al. 2021) to re -
motely detect different phytoplankton groups going 
forward in this dynamic and rapidly changing region 
of the Southern Ocean. 
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Continued long-term in situ monitoring is critical to 
maintain in this region to further validate remote sen-
sing algorithms and explore potential new technol-
ogies for assessing biodiversity and biogeochemistry. 
High solar zenith angle at high latitudes in the south-
ern hemisphere limit temporal coverage of passive 
ocean color measurements, making winter months 
May to August unretrievable (Fig. 2; Fig. S7) and 
early spring and late fall retrievals (September, April) 
more prone to error due to the longer pathlength 
through Earth’s atmosphere. Additionally, satellite-
derived chl a estimates only apply during cloud-free 
conditions and only in the surface ocean. Studies 
show that chl a maximum concentrations often occur 
at depths as deep as 75 to 100 m that cannot be as -
sessed directly with passive ocean color measure-
ments (Holm-Hansen & Hewes 2004). These biases 
can be mitigated in future work using data from pro-
filing biogeochemical-Argo floats (e.g. Arteaga et al. 
2020, Hague & Vichi 2021) and airborne and space-
based lidar to better understand what happens in Ant-
arctic waters at times and depths for which passive 
satellite observations are not available. Space-based 
lidar has the potential to estimate phytoplankton bio-
mass within the first 3 optical depths for more repre-
sentative phytoplankton physiology measurements 
from space (Behrenfeld et al. 2017). Thus, merging 
field data and advanced modeling (Kim et al. 2021) 
with new technology, such as hyperspectral drones 
(Joyce et al. 2019) and airborne and space-based lidar 
(Behrenfeld et al. 2017, Bisson et al. 2021), will allow 
us to better explore changes in this dynamic region. 
Future work will also be improved by the increasing 
length of the time series. Although 25 yr of ocean 
color data represent a valuable resource, the time 
series is still relatively short. Modeling studies have 
revealed that at high latitudes, 20 to 40 yr of data are 
needed to illuminate climate-relevant trends in ocean 
primary production (Henson et al. 2013, 2018). With 
the launch of the next generation of hyperspectral 
satellite missions like NASA’s Plankton, Aerosols, 
Clouds, and ocean Ecosystems and Surface Biology 
and Geology over the next decade (Dierssen et al. 
2023), we will continue to investigate these long-term 
bloom phenology trends and impacts on the trophic 
web in this dynamic polar ecosystem. 
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chl a analysis are available from CMEMS at https://data.
marine.copernicus.eu/product/OCEANCOLOUR_GLO_B
GC_L4_MY_009_104/services (data set: Cmems_obs-
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Wind data are available from ECMWF via the Copernicus 

Climate Data Store at https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form 
(data set: ERA5 hourly data on single levels from 1940 to pre-
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Code used to make figures is available at https://doi.org/10.
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Term or abbreviation                            Definition 
 
Accumulation season                           Period each year when surface chlorophyll a (chl a) concentration is increasing such 

that average phytoplankton mass-specific loss rates < growth rates 
Chl a                                                          Chlorophyll a concentration (mg m–3) 
CMEMS                                                   Copernicus Marine Environmental Monitoring Service 
CZCS                                                         Coastal Zone Color Scanner sensor 
ERA5                                                          ECMWF Re-Analysis Version 5, a climate reanalysis data product generated by the 

European Centre for Medium-Range Weather Forecasts (ECMFW). 
MERIS                                                       Medium Resolution Imaging Spectrometer sensor 
MIZ                                                            Marginal ice zone 
MLD                                                          Mixed-layer depth 
MODIS-Aqua                                          Moderate Resolution Imaging Spectroradiometer sensor on the Aqua satellite 
MODIS-Terra                                          Moderate Resolution Imaging Spectroradiometer sensor on the Terra satellite 
OLCI-S3A                                                Ocean and Land Colour Instrument sensor on the Sentinel-3A satellite 
OLCI-S3B                                                 Ocean and Land Colour Instrument sensor on the Sentinel-3B satellite 
OSTIA                                                       Operational Sea Surface Temperature and Sea Ice Analysis 
PAR                                                            Photosynthetically active radiation 
pCO2                                                          Partial pressure of carbon dioxide 
Peak date                                                  Day of year of the timing of the maximum chl a concentration 
SAM                                                           Southern Annular Mode 
SeaWiFS                                                   Sea-viewing Wide Field-of-view Sensor 
SPF                                                             Southern Polar Front 
SST                                                             Sea surface temperature 
Start date                                                  Day of year of the start of the phytoplankton accumulation season 
Threshold                                                 Value defining bloom start date; long-term median chl a + 5% 
VIIRS-NOAA20                                      Visible Infrared Imaging Radiometer Suite sensor on the NOAA-20 satellite 
VIIRS-NPP                                               Visible Infrared Imaging Radiometer Suite sensor on the National Polar-orbiting 

Partnership satellite 
WAP                                                          West Antarctic Peninsula
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