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Decline in plankton diversity and carbon
flux with reduced sea ice extent along the
Western Antarctic Peninsula
Yajuan Lin 1,2,3✉, Carly Moreno 4, Adrian Marchetti 4, Hugh Ducklow 5, Oscar Schofield6,

Erwan Delage7, Michael Meredith8, Zuchuan Li1,9, Damien Eveillard 7,10, Samuel Chaffron 7,10 &

Nicolas Cassar 1,2✉

Since the middle of the past century, the Western Antarctic Peninsula has warmed rapidly

with a significant loss of sea ice but the impacts on plankton biodiversity and carbon cycling

remain an open question. Here, using a 5-year dataset of eukaryotic plankton DNA meta-

barcoding, we assess changes in biodiversity and net community production in this region.

Our results show that sea-ice extent is a dominant factor influencing eukaryotic plankton

community composition, biodiversity, and net community production. Species richness and

evenness decline with an increase in sea surface temperature (SST). In regions with low SST

and shallow mixed layers, the community was dominated by a diverse assemblage of diatoms

and dinoflagellates. Conversely, less diverse plankton assemblages were observed in waters

with higher SST and/or deep mixed layers when sea ice extent was lower. A genetic pro-

gramming machine-learning model explained up to 80% of the net community production

variability at the Western Antarctic Peninsula. Among the biological explanatory variables,

the sea-ice environment associated plankton assemblage is the best predictor of net com-

munity production. We conclude that eukaryotic plankton diversity and carbon cycling at the

Western Antarctic Peninsula are strongly linked to sea-ice conditions.
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The Southern Ocean disproportionally contributes to the
global climate system, accounting for almost half of the
anthropogenic CO2 and 75% of the heat uptake by the

oceans1,2. The Western Antarctic Peninsula (WAP) system has
exhibited some of the most significant changes in the Southern
Ocean3,4, with rising air temperature up to 7 °C since 19505,
warming and freshening of the upper ocean6, warming of the
deeper ocean6, deepening of the mixed layer depth (MLD)7, and
the fastest sea ice decrease in Antarctica (Fig. 1)8,9. Whilst
atmospheric warming trends at the Antarctic Peninsula have
paused or even reversed in places since the end of the twentieth
century, this is understood as natural interannual climate varia-
bility that is superposed on the longer-term trends10. There have
been observed ecosystem changes throughout the entire Antarctic
marine food web7,11–14. At the base of the food web, WAP
eukaryotic plankton including phytoplankton and micro-
zooplankton support higher trophic levels ranging from krill to
penguins and whales13, drive biogeochemical cycles15–17, and
regulate oceanic carbon uptake7. Thus, given the fundamental
importance of eukaryotic plankton at the WAP, it is imperative to
understand and predict the changes in plankton community
structure, biodiversity, and carbon flux in this rapidly changing
environment18.

The WAP system is characterized by a short but highly pro-
ductive growing season during austral spring and summer19. The
net community production (NCP) represents the balance between
gross primary production and community respiration. When the
organic carbon pool at the mixed layer is under a steady state, the
net carbon flux in (i.e., NCP) equals the net carbon flux out (i.e.,
carbon export). Therefore, NCP reflects the amount of organic
carbon available for export out of the surface MLD.

Here, we analyze five years of high-resolution NCP and high-
throughput DNA sequencing data to explore the contribution of
polar eukaryotic plankton to biological carbon fluxes. We show
that among the considered environmental factors (iron not
included), SST and sea-ice condition are strong predictors for
community structure and NCP. We find that biodiversity is
reduced when SST is high at the WAP. Finally, in order to
improve NCP predictions, we build machine-learning models
including in-depth community structure, community co-
occurrence patterns, and physical conditions. Among the top-
performing NCP models, a sea-ice associated plankton assem-
blage is a key predictor, with central (i.e., most connected) taxa
identified as Thalassiosira, Odontella, Porosira, Actinocyclus,
Proboscia, Chaetoceros, and Gyrodinium. The combination of
biogeochemical tools and DNA metabarcoding sheds a unique

Fig. 1 Monthly sea-ice area anomalies at the WAP. a Location of the study area (red box) and the Palmer LTER sampling grid with hydrostations (blue
dots). b Time-series of monthly averaged sea-ice area (SIA) anomalies for Palmer LTER sampling area from 1979 to 2017. Blue (red) bars represent
negative (positive) SIA compared to a 39-year climatology for a particular month. SIA data were downloaded from Palmer LTER DataZoo (http://pal.
lternet.edu/data). Cyan arrows highlight the sampling periods in this study.
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insight into environmental forcings, plankton diversity, commu-
nity structure and interaction, and biological carbon flux varia-
bility in a rapidly changing polar environment.

Results and discussion
O2/Ar-based in situ NCP observations at the WAP in austral
summer from 2012 to 2016 demonstrate substantial spatial het-
erogeneity and interannual variability (Fig. 2). This was a period
of moderately positive sea-ice area (SIA) anomalies following a
more prolonged period of anomalously low SIA (Fig. 1). During
the summer, NCP was highest in the shelf zone and decreased
offshore, which is consistent with previous ship-based15,20 and
satellite-based observations19. In addition, the observed NCP
exhibited marked interannual variability related to ice conditions.
The two years that feature late sea-ice retreat (2014 and 2016)
were associated with abnormally high summer NCP (t-test, p <
0.0001) (Fig. 2). In previous studies, elevated NCP or primary
production under high sea-ice conditions were attributed to ice-
melt enhanced water column stability, thus higher light avail-
ability, and potential iron supplied by sea ice7,20. From a decadal
study considering climate oscillations13, bloom-favorable condi-
tions at the WAP have been linked to negative winter and spring
phases of the Southern Annular Mode (SAM), the dominant
mode of extra-tropical climate variability in the Southern
Hemisphere21. Negative SAM leads to increased ice extent in
winter, restricting deep mixing, and then enhanced ice-melt in
spring/summer, resulting in intensified stratification.

Eukaryotic plankton, including phytoplankton and micro-
zooplankton, are key drivers of carbon fluxes at the WAP16.
Based on a five-year WAP DNA sampling, we explored the
plankton community structure and diversity via sequencing of the
18S rRNA gene marker. At the phylum level, four eukaryotic
plankton dominated the WAP surface water, including diatoms
(25.0%), cryptophytes (23.0%), dinoflagellates (19.6%), and hap-
tophytes (11.3%) (Fig. S3). Other eukaryotic plankton groups,
mostly heterotrophic protists, contributed less than 5% of the 18S
reads. Community composition differed substantially between

years with high and low sea ice extent (Fig. S4). For the years 2014
and 2016 with high sea ice, eukaryotic plankton communities
comprised on average 39.5 ± 3.0% diatoms, 20.5 ± 1.3% dino-
flagellates, 15.1 ± 6.1% cryptophytes, and 7.1 ± 2.4% haptophytes.
In contrast, for warm years with less sea ice in 2012, 2013, and
2015, eukaryotic plankton communities comprised on average
28.9 ± 8.3% cryptophytes, 19.0 ± 1.6% dinoflagellates, 14.4 ± 4.4%
haptophytes, and 14.0 ± 1.7% diatoms, all significantly different
from cold years (two-sided t-test, p < 0.0001).

At the finest taxonomic resolution, 2480 amplicon sequence
variants (ASVs) were identified from the five-year amplicon
dataset (119 samples). Canonical correspondence analysis (CCA)
illustrates that either ice conditions or SST is the dominant driver
on community structure at the ASV level (Fig. 3). The first axis
CCA1 (17.5% of the variance) separates samples from late (2014
and 2016) and early (2012, 2013, and 2015) ice-retreat years. The
most substantial abiotic factor associated with CCA1 is SST
(negatively correlated), and the most substantial biotic factors
associated with CCA1 are Chl and biological O2 (both positively
correlated), consistent with ice-melt enhanced biomass and pro-
ductivity. Freshwater inputs were estimated from oxygen isotope
signatures. Low salinity, as well as high fractions of sea-ice melt
and meteoric water, are also associated with CCA1 but to a lesser
extent than SST. CCA2 (7.3% of the variance) separates mainly
the offshore and nearshore samples, with distance to coast (X
grid) and MLD being the top two associated environmental fac-
tors. CCA3 (5.7% of the variance) indicates community differ-
entiation along the north-to-south gradient (Y grid), potentially
reflecting a long-term ice retreat impact on communities and/or a
north-to-south climate gradient along the WAP11,19; CCA3 could
also reflect interannual variability in sea ice extent. Overall, sea-
ice conditions and associated environmental parameters, such as
low SST (Fig. S1 and S2) and low salinity, are the primary drivers
of community differentiation at the ASV level.

To further investigate the effect of temperature as one of the
major abiotic factors influencing polar plankton composition22,
we examined the temperature effect on biodiversity (ASV based)
using three diversity indices, Chao1, Pielou’s evenness, and
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Fig. 2 Spatial patterns of summer WAP ice concentrations and NCP from 2012 to 2016. January averaged sea-ice concentrations derived from passive
microwave satellite measurements (top). Red contours represent the biologically relevant ‘ice-edge’ defined as an ice concentration threshold of 5%.
Underway estimates of NCP using O2/Ar method from the annual PAL-LTER sampling cruises along the WAP grids (bottom).
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Shannon. Chao1, a measure for species richness, demonstrated an
evident decline towards higher SST (Fig. 4), with a 40% decrease
in the index for a 4 °C rise in SST. Pielou’s evenness and Shannon,
which consider both species richness and evenness, also decreased
significantly with increasing SST. It indicates that communities in
warmer WAP waters show lower richness and lower evenness,
i.e., that a few taxa dominate. Interestingly, in a recent global
analysis on plankton biodiversity from Tara Oceans23, the tem-
perature was also identified as the major explanatory factor for
global-scale eukaryotic plankton biodiversity estimated by the
Shannon index, but with the opposite trend, i.e., a decreased
diversity towards higher latitude or lower temperature. We note

that whilst the Tara Oceans dataset represents the most com-
prehensive oceanic DNA sampling efforts to date, it featured only
limited sampling in the Southern Ocean (three data points), and
it did not include a longitudinal survey that captures the
mesoscale effect of changing temperature on a given community;
our five-year WAP sample collection hence complements well the
Tara Oceans observations for the previously under-sampled
Southern Ocean. One explanation for the unexpected high bio-
diversity observed under low temperature at the WAP is that the
ice-associated plankton communities consist mainly of diatoms
(Fig. S4), which are highly diverse and can thrive at lower tem-
peratures compared to other phytoplankton24. As a unique
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Fig. 3 Canonical correspondence analysis (CCA) biplots. Each point represents the eukaryotic plankton community composition from a surface ocean
sample with year indicated by color and station type (i.e., offshore, nearshore north, or nearshore south) indicated by shape. CCA1 and 2 are depicted (a)
as well as CCA1 and 3 (b). Vectors indicate stepwise selected environmental constrains, both biotic and abiotic, with factor names marked at the end.
Acronyms for selected environmental factors: SST – sea surface temperature, SiO4 – silicate concentration, mldst – mixed layer depth defined by potential
density, XgridCal – X grid or grid station calculated from GPS, YgridCal – Y grid or grid line calculated from GPS, fsim – fraction of sea-ice melt estimated
from δ18O, fmet – fraction of meteoric water estimated from δ18O, Chl – chlorophyll concentration, o2ar – biological oxygen supersaturation. Source data are
provided as a Source Data file.
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Source data are provided as a Source Data file.
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longitudinal test case (e.g., as documented in25), our results
suggest that global warming may decrease plankton diversity in
coastal Antarctica.

Due to the high dimensionality of the ASV dataset, it is chal-
lenging to model NCP based on community structure. Thus, we
applied a weighted gene correlation network analysis (WGCNA)
approach to delineate clusters of 18S ASVs into subnetworks or
modules (Fig. S5)26,27. This approach allows us to reduce the total
number of variables while preserving information on ASV
abundances and potential interactions28. In total, we identified 12
modules from the five-year global community structure (Fig. S5).
Each module represents an assemblage of predicted highly
interconnected plankton community members, potentially indi-
cating a group of organisms with strong ecological overlap and/or
interactions29. The eigenvalue of each module represents the
overall abundance of the assemblage. In addition, in order to
investigate the niche partitioning of the different community
assemblages or modules, correlation analysis was performed in
WGCNA to link them to different abiotic and biotic factors
(Fig. S5). Next, we applied Genetic Programming (GP), a
machine learning approach based on evolution computation30,31,
to generate and parameterize statistical models that predict NCP
based on the WGCNA generated bio-assemblages (n = 12) and
physical factors (n = 6) (see “Methods” for a detailed list). The
relationships between carbon-based plankton biomass, their
physiology (indirectly modeled as functions of environmental
factors), and biogeochemical rates are often non-linear and could
involve multiple layers of interactions. GP allows us to capture
the complex and non-linear relationships between these different
factors to predict NCP without an a priori assumption. The
overall idea of this modeling approach is that biogeochemical
rates are a function of (i) the community composition and
abundance; and (ii) the specific metabolic rates regulated by
environmental factors, such as the photosynthesis-irradiance
curve and the productivity−temperature (Q10) relationship. The
top four GP solutions (Table S2, ranked by mean square error
(MSE)) provide good predictions on NCP with R2 ranging from
0.70 to 0.80. Among the explanatory variables selected by the
models, the top two physical factors ranked by selection fre-
quency are SST and MLD, followed by surface photosynthetically
active radiation (PAR). This suggests that temperature and light
are likely the primary physiological limiting factors on NCP in
the WAP system. As an alternative, SST could be an indirect
proxy for time since ice-retreat, i.e., higher SST indicates a longer
time after the initial ice retreat.

Among the community-assemblage factors in GP solutions,
module turquoise (MET) is the most important predictor for NCP.
MET is also the largest module identified, which consists of 126
ASVs, mainly representing diverse groups of diatoms and dino-
flagellates (Fig. 5a; Supplementary Data 2). The central nodes in the
MET network, which represent the top-10 most connected ASVs or
the central ASVs for the network structure32, include the diatom
genera Thalassiosira, Odontella, Porosira, Actinocyclus, Proboscia,
Chaetoceros, and the dinoflagellate Gyrodinium. MET appears in all
top-four performed GP solutions, and it is the sole biological factor in
solution 1 explaining a majority of the NCP variability (R2 = 0.70)
(Table S2). The overall spatial distributions of MET are consistent
with the January averaged sea-ice distribution estimated by satellite
(Fig. 5c). In the WGCNA correlation analysis (Fig. S5), MET is
significantly correlated with low SST (R = −0.51, p = 1 × 10−8), low
salinity (R = −0.48, p = 8 × 10−8), shallow MLD (R = −0.36, p =
1 × 10−4), elevated sea-ice melt (R = 0.33, p = 3 × 10−4) and
meteoric freshwater (R = 0.34, p = 3 × 10−4). Although sea-ice melt
and meteoric freshwater both show positive effects on MET, they
could exert this through different mechanisms. Because iron con-
centrations were not included in this analysis, we cannot discern

whether sea ice and/or glacial ice melt impact productivity through
altering light and/or iron levels by increased stratification or fertili-
zation. However, according to a recent study at the eastern Antarctic
Peninsula, sea-ice melt could mostly influence carbon fixation
through water column stabilization, while the effect of glacial melt
could be through providing a significant amount of iron to the
system33. In the Southern Ocean, photosynthetic efficiency (Fv/Fm)
varies with an iron status where lower values suggest iron stress and
higher values of iron sufficiency34. Previous studies have found NCP
to be positively correlated with Fv/Fm35. Although no direct iron
measurements were made in this study, iron availability being a first-
order factor regulating NCP at the WAP cannot be ruled out. Fur-
thermore, besides NCP (R = 0.57, p = 8 × 10−11) ship-based
observations of primary production (PP) and bacterial production
(BP) are also both positively correlated with MET with R= 0.47, p=
1 × 10−7 and R = 0.61, p = 2 × 10−12, respectively. This indicates
that MET-dominated regions have high biological activities. The high
NCP values associated with MET are largely driven by autotrophs;
otherwise, we would expect a negative correlation between MET/
NCP and BP.

Two other community-assemblages, MER (module red, 27
ASVs) and MEG (module green, 29 ASVs), also contribute to
NCP models but to a lesser extent (Table S2). In the GP solutions
(1) and (2), MER contributes to NCP positively, and the addition
of MER marginally improves NCP prediction (R2 from 0.70 to
0.72, MSE from 1.18 to 1.12). The MER assemblage is dominated
by the cryptophyte Geminigera that appear in warmer waters
(SST, R = 0.45, p = 6 × 10−7) and towards the north WAP (Y
grid, R = 0.4, p = 2 × 10−5) (Figs. S5 and S6). MEG contributes to
NCP negatively in GP solutions (2) and (3). It represents a group
of heterotrophic protists, dominated by Picomonas and Telonema.
The top two environmental factors correlated with MEG are
MLD (R = 0.5, p = 2 × 10−8) and distance to shore (X grid, R =
0.49, p = 6 × 10−8).

Based on our observations and analyses, we hypothesize that
the summer plankton community—NCP system at the WAP
mainly follows three broad patterns: (i) large centric diatoms
associated with ice-melt form intensive blooms and fuel a short
food chain from krill to other top predators13. In particular, the
spring melt of sea ice and glacial discharge could work in concert
to stabilize the water column and provide a source of iron. This
high productivity combined with small losses through trophic
transfer results in high export production. (ii) In warmer water,
small cryptophytes dominate. Compared to large diatoms, their
growth could be more efficiently checked by small micro-
zooplankton grazers36, thus resulting in lower biomass for
export16. Moreover, the food chain starting from small phyto-
plankton is longer due to more trophic level transfers, and the
organic matter could be more subject to remineralization37. (iii)
With deep mixing, primary production in the water column is
low due to light limitation. Because of the limited food resource,
heterotrophic protists feeding on bacteria and detritus dominate
the microzooplankton system. Compared to scenarios (i) and (ii),
more organic carbon may be recycled through the microbial loop,
which further reduces carbon export and air−sea CO2 fluxes7.
The last pattern displays the lowest NCP. Previous WAP studies
using an inverse food web model illustrated that micro-
zooplankton grazing and the microbial loop could consume a
significant amount of carbon38,39. With climate change, the WAP
region is projected to have a significant loss in summer sea ice, a
rise in sea surface temperatures, and deeper mixing associated
with more open water and stronger winds. Consequently, the
latter two scenarios may become more prevalent in the upcoming
years to decades.

Although our study represents the longest record of eukaryotic
DNA-based community structure and NCP in coastal Antarctica, our
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observations are limited to seasonal snapshots of the (summer) WAP
system. These observations need to be expanded to larger spatial and
temporal scales in the Southern Ocean. In the future, correlation-
based analyses and statistical models will need to be further validated
with field incubations and lab experiments. Non-targeted omics-
based surveys (e.g., metagenomic, metatranscriptomic, and proteomic
studies) will provide additional insights into the microbial metabolic
pathways, which are directly linked to the biogeochemical rates and
associated ecosystem functions. Moreover, they need to be coupled
with high-resolution time-series studies to help us unravel changes in
phytoplankton phenology and predator-prey dynamics. Despite the
methodological limitations and uncertainties, our results indicate that
temperature and sea ice extent are two important environmental
factors regulating the summer WAP eukaryotic plankton community
structure, biodiversity, productivity, and associated carbon export
potential. To the extent that the observed interannual variability in
the influence of sea ice extent on ecosystem structure and functioning
serves as a proxy for broader, longer-term ecological consequences
associated with climate change, the WAP and other coastal Antarc-
tica regions could be destined for reduced biodiversity and biological
carbon drawdown. However, a longer time series will be needed to
confirm the pattern.

Methods
Environmental data and DNA sampling. Environmental data from the Palmer
Long-Term Ecological Research (LTER) cruises can be accessed from the online data
repository Palmer LTER DataZoo (http://pal.lternet.edu/data). The detailed sampling
methods and in situ biological rates measurements were described previously in40. In
brief, each year in January, a research vessel conducted intensive oceanographic and
biological surveys across the shelf-transects and a north−south gradient at the West
Antarctic Peninsula (WAP). During the annual LTER cruises, underway measure-
ments and surface water sampling were conducted from the ship’s continuous flow-
through system. Discrete water samples in-depth profiles were collected using a

Conductivity−Temperature−Depth (CTD) rosette. Mixed layer depth (MLD) was
estimated from the ship’s CTD profiles by Δσθ = 0.03 kgm−3 using a threshold
method41.

PAR above the water was continuously recorded from the mast PAR sensor of
the ship. It was converted to PAR just beneath the water surface using a constant of
0.92. Average PAR in the mixed layer (PAR_mld) was then calculated following the
method described in42.

Freshwater fractions were estimated from salinity and oxygen isotope signatures
(δ18O) in seawater detailed in43. In brief, sampled seawater was assumed to be a
mixture of ice-melt, meteoric meltwater, and Circumpolar Deep Water (CDW). A
three-end member mass balance method was used to calculate the fractions, with
salinity and δ18O values in 7 and 2.1‰ for sea-ice melt, 0 and −16‰ for meteoric
meltwater, and 34.73 and 0.1‰ for CDW.

In order to collect eukaryotic plankton DNA, surface seawater from the ship’s
underway flow-through system was gently vacuum-filtered onto a 47 mm, 0.45 µm
Supor filter (Pall Corporation, New York, NY, USA) for years 2012 and 2013, or a
47 mm, 0.2 µm Supor filter for years 2014, 2015, and 2016. The filtration volumes
were about 4 L or less at high biomass stations. For each filtration, the exact filtrate
volume was recorded for later quantitative microbiome profiling (QMP). The filters
were immediately stored at −80 °C until further analysis.

Remote sensing data. January sea ice concentrations from 1979 to 2020 were
downloaded from the National Snow and Ice Data Center website https://nsidc.org/.
The data are in the polar stereographic projection, with each grid representing a 25 ×
25 km area. January sea surface temperature (SST) data from 1982 to 2012 were
acquired by the AVHRR and downloaded from NOAA website https://www.ncei.
noaa.gov/. January SST data from 2013 to 2020 were acquired by MODIS-Aqua and
downloaded from NASA ocean color website https://oceancolor.gsfc.nasa.gov/. SST
data have a spatial resolution of 4 × 4 km in the equatorial region. Finally, we
extracted January SST and sea ice concentrations in the Palmer grid from lines 0 to
900 and stations 0 to 220 (Figs. S1 and S2).

Underway O2/Ar—NCP measurements. The O2 concentration in the mixed layer
is influenced by physical and biological processes. Using Ar, an inert gas with
similar solubility properties as O2, we decomposed total O2 into physical and
biological components. Seawater O2/Ar ratios were measured underway from the
ship’s flow-through system, using an equilibrator inlet mass spectrometer

   
   

   
 

 

2012 2016 2015 2014 2013 

a 

c 

b 

Module eigenvalue (r.u.) 

Grid sta�on (km) 

Gr
id

 li
ne

 (k
m

) 

Fig. 5 An ice-associated plankton assemblage (MET module from WGCNA analysis). a The MET subnetwork presents a diverse group of correlated
ASVs or nodes, with each node colored by its centrality (i.e., darker color for higher centrality). The hub nodes of the network, i.e., the top-10 ASVs with the
highest connectivity or the central members for the network, were identified at the genus level as Thalassiosira, Odontella, Porosira, Actinocyclus, Proboscia,
Chaetoceros, and Gyrodinium. b ASVs with higher module membership, i.e., higher intramodular connectivity, are more correlated with volumetric NCP (R =
0.7, two-sided t-test p = 9.6 × 10−16). c The biogeography of MET at the WAP, with color indicating the eigenvalue in the relative unit. Black points show
the DNA sampling locations. Source data are provided in Supplementary Data 2 and 4.
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(EIMS)44. Biological O2 supersaturation was estimated as

ΔðO2=ArÞ ¼
ðO2=ArÞsample
ðO2=ArÞsat

� 1

� �
´ 100%

High-resolution NCP in units of mmol O2 m−2 day−1, was then derived from Δ
(O2/Ar) and NCEP reanalysis winds as previously described in45, except for a
modification to the gas exchange weighting following46. NCP estimation can be
expressed as the equation below,

NCP ¼ k O2

� �
satΔðO2=ArÞ

Where k denotes the gas transfer velocity for O2 (estimated based on47) and [O2]sat
is the equilibrium saturation concentration of O2 (calculated based on48).
According to45, the ship-based O2/Ar NCP estimates are highly correlated with
NCP calculated from the seasonal DIC drawdown in this region (R2 = 0.83). Note
that our O2/Ar-NCP measurements in this study only reflect the mixed layer
carbon fluxes and we do not assess the sequestration timescales.

DNA extraction and metabarcoding. DNA extraction and PCR were conducted as
previously described40. In brief, cells were lysed by bead-beating at 4800 rpm for 1min
with 0.2 g of 0.1mm Zr beads in 400 µl of Qiagen lysis buffer AP1. DNA was then
extracted using DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) following the
manufacturer’s instructions. rRNA gene amplicon libraries were constructed using dual
indexed 18S rRNA gene V4 primer set16, EukF (5′–CCAGCASCYGCGGTAATTCC–
3′) and EukR (5′–ACTTTCGTTCTTGAT–3′). For each sample, PCR amplifications
were conducted in triplicates with one blank as a control for contamination. The PCR
reactions followed a 30-cycle program with annealing temperature at 57 °C. The
resulting PCR products were purified using QIAquick PCR Purification Kit (Qiagen),
and were pooled in equimolar concentration to 10 ng/µl approximately. The pooled
amplicon libraries were sequenced at Duke Center for Genomic and Computational
Biology in three MiSeq 300PE runs.

Sequence processing. Paired-end reads with dual indices were assembled using
VSEARCH v2.3.4 (Rognes et al. 2016) following the algorithm described in49. The
merged reads were (i) demultiplexed in QIIME 150; (ii) trimmed to remove Illu-
mina adapters, primers, and barcodes, using BBDuk (v38.29) (http://jgi.doe.gov/
data-and-tools/bb-tools/); and (iii) processed following the DADA2 pipeline
(version 1.10.1) to infer ASVs51. Quality filtering and denoising with chimeras
removal were performed using the incorporated functions in the DADA2 package.
In total, 2480 ASVs were identified from the five-year amplicon dataset. The
sequence counts per sample (after quality filtering) were reported in Supplementary
Data 1, with median = 67,547 reads per sample.

ASVs were then classified by the ‘assignTaxnonomy’ function in DADA2
following the naïve Bayesian classifier method52, using a DADA2 formatted Silva
132 reference database (DOI 10.5281/zenodo.1172783)53. The resulted
classification for each ASV is presented in Supplementary Data 3.

Alpha diversity. After discarding two samples with the lowest counts 2016S33 and
1016S34, the libraries (n = 117) were rarified to even depth. Alpha diversity indices
Chao1 and Shannon (H′) were calculated for each sample using R package Phy-
loseq v1.26.154. Pielou’s evenness was calculated as J = H′/ln(S), where S is the total
number of ASVs observed in a rarified sample.

Canonical correspondence analysis (CCA). CCA was conducted to investigate
the relationships between community composition changes and environmental
constrains55 using R package vegan (v2.5-4)56. In total, 14 environmental variables
were initially examined, including XgridCal, YgridCal, PAR, Salinity, SST, Chl,
mixed layer depth, volumetric NCP, biological oxygen supersaturation, PO4, SiO4,
N+N, fsim, and fmet. Bacterial production (BP) and primary production (PP) were
not included in this analysis due to a large number of missing values. After a
stepwise variable selection based on Akaike Information Criterion (permutation =
1000 per step), the constrained community CCA was conducted with selected
environmental variables and the results were presented in Fig. 3.

Construct statistical models for NCP. Below we describe a three-step procedure:
(i) ASV counts were normalized to generate QMP; (ii) in order to reduce the model
dimension, a WGCNA was applied to QMP to generate modules or bio-assemblages,
and (iii) the resulting WGCNA modules and environmental variables were fed to the
genetic programming (GP) algorithm to construct predictive models for NCP.

Quantitative microbiome profiling (QMP). All samples from the year 2014 and four
samples from the year 2013 (2013SA, 2013SB, 2013SC, and 2013SD) were pro-
cessed first, and 0.88 ng of Schizosaccharomyces pombe gDNA (ATCC #24843D-5,
Manassas, VA, USA) in single-use aliquot was spiked into to each sample as an
internal standard before DNA extraction. The S. pombe reads did not turn out high
enough for normalization in the resulting library, i.e., ≤0.1%. For samples from the
years 2012, 2013 (except for the previous four samples), and 2015, we increased the
amount of S. pombe gDNA to 16.0 ng per sample and the internal standard pro-
portion turned out appropriate for detection (0.7−5.7% of the total 18S counts). In

the third batch, samples from the year 2016 were extracted with no internal
standard due to a logistic issue in the lab.

For samples from the second batch, we normalized the ASV counts to QMP (in
unit of 18S gene copy numbers L−1) using internal standards and recorded
filtration volumes as described in40.

For samples from the first and third batches, reads were normalized to QMP
using an empirical linear relationship40 (R2 = 0.94) between x—cryptophyte
Alloxanthin concentrations in μg/L, and y—cryptophyte 18S rRNA gene counts in
copies/mL: y = 2.05 × 106x. The Alloxanthin concentrations in the linear
calibration range from 0.01 to 6.22 μg/L. Although Alloxanthin concentrations for
all samples used in this calculation are above 0.01 μg/L, we note that there is higher
uncertainty towards the lower concentration end. The resulted Phaeocystis 18S
QMP in years 2014 and 2016 were strongly correlated with Phaeocystis
CHEMTAX abundances (R2 = 0.62), except for two outliner samples 2014S17 and
2014S44, likely due to low Alloxanthin concentrations in these two samples. QMP
for these two samples was then recalculated using an empirical linear relationship
derived from Phaeocystis CHEMTAX abundance40.

As a complementary analysis, we recalculated QMP (QMP_recal) using the
empirical HPLC-CHEMTAX normalization for samples from 2013 to 2016 (no HPCL
data for the year 2012). The resulted QMP_recal is highly similar to the internal
standard method QMP (y = 0.99x, R2 = 0.87), except for one sample 2015S13.

Weighted gene correlation network analysis. ASVs which were not observed more
than three times in at least 20% of the samples were removed from the count table.
WGCNA was conducted to identify inter-connected plankton bio-assemblages
(modules) and correlate them with environmental variables using R package
WGCNA v 1.6627. The calculated QMP for 112 samples were included in one
WGCNA run with all samples considered independent of each other. The QMP
matrix was log-transformed. The detailed R codes for each step of this analysis are
presented as a supplementary file. Soft thresholding power was set at 4, which was
the minimum value for the scale-free topology fit reaching R2 = 0.9. In module
identification using dynamic tree cut, the minimum module size was set at 10 in
order to generate medium to large modules. The analysis resulted in 12 WGCNA
modules from thousands of ASVs, thereby significantly reducing the number of
input variables for the NCP model. The co-occurrence network of each module was
visualized using an open-source tool Cytoscape (v3.7.0).

Genetic programming to build NCP models. Based on community structure
(modules) and abiotic environmental variables, GP was used to construct statistical
models predicting volumetric NCP. GP is a machine-learning approach based on
evolutionary computation and it has been successfully used to construct a NCP
algorithm based on satellite observations in a previous study31. In this study, the
input factors for GP are, (i) the eigenvalues for 12 WGCNA modules, representing
the biological/community factors with resolution at ASV level, and (ii) a list of
physical factors, including MLD, PAR, PAR_mld, Salinity, SST, fsim, fmet, X grid,
and Y grid, which may directly or indirectly influence plankton physiology. The
combined dataset (n = 112) was randomly split into even training and validation
datasets. GP was then conducted using Eureqa (v1.24.0) following the recom-
mendations by57. The candidate solutions with varying complexity were ranked by
mean squared error (Table S2). In order to reduce the risk of overfitting, the
complexity of the candidate solutions was kept to a minimum.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
DNA sequencing data generated in this study have been deposited in the National Center
for Biotechnology Information (NCBI) under accession number PRJNA508517. Palmer
LTER data are available through Datazoo (http://pal.lternet.edu/data). Silva 132 reference
database used for taxonomy classification was downloaded from (https://doi.org/10.5281/
zenodo.1172783). Source data are provided with this paper.

Code availability
The R codes for WGCNA analysis and the MATLAB codes for NCP calculation can be
accessed from GitHub (https://github.com/nicolascassar/WGCNA-Analyses and https://
github.com/nicolascassar/O2Ar_calculations).
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