Assessing the Dominant Denitrifying Bacteria in the Mid-Atlantic Bight Sediments

Rosa I. León-Zayas¹, Lora McGuinness² and Lee Kerkhof²

1University of Puerto Rico at Mayagüez, 2 Institute of Marine and Costal Science, Rutgers University

Abstract

Denitrifying bacteria are important in marine environments because they may remove over 50% of the nitrogen input to the ocean (2). In order to elucidate how the oceanic denitrifying ecosystem is structured and maintained, we analyzed 19 sediment samples from the mid-Atlantic Bight (MAB) that had been collected between June and November 1996-1998. The purpose of the project was to identify which denitrifying bacteria dominate communities in oceanic sediments. The denitrifying bacteria were characterized using the nitrous oxide reductase (nosZ) gene and Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis. To determine which restriction enzyme provided the best resolution of nosZ genes in the MAB, fluorescently labeled PCR product was cut with the enzymes MboI, RsaI, HaeIII, and MnlI. MboI showed the greatest number of well-separated and defined peaks and was used in all further work. A total of 120 different nosZ peaks were detected in all samples. To establish the dominant denitrifiers, a frequency analysis was performed on all TRFLP samples. Only those peaks that occurred in 90% or more of the samples were considered dominant. Fifteen peaks were present in high percentage of the TRFLP profiles. These peaks represented 51, 66, 82, 113, 146, 149, 175, 195, 222, 259, 313, 353, 428 and 433 bp. A clonal library was created from a single sample, and screening of 50-100 clones is now underway. Six sequences were performed of the peaks of interest and the results were compared with database for identification.

Background

Denitrification converts nitrate into gaseous nitrogen, which is less accessible to the organisms and accumulates in the atmosphere.

Denitrification Pathway

\[\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2 \]

Nitrous oxide reduction is the last step in the denitrification pathway. Facultative anaerobic bacteria perform this process generally under anaerobic conditions. Denitrifying bacteria are important players in the global nitrogen cycle, particularly in coastal waters where high concentrations of nitrogen compounds are introduced through run off and waste inputs. These inputs of nitrogen compounds may have a large impact on algal production and bacterial activity. Additionally, the production of nitrous oxide as an intermediate of the denitrification pathway, is known to contribute to global warming. Understanding which organisms are active denitrifiers can help us understand the effects of nitrogen pollution in the coastal environment. Knowing the organisms that are more abundant and understanding their behavior might also give us tools to modify or create systems to bioremediate polluted sites using these organisms.

Objective

• What are the dominant/most abundant denitrifiers in the Mid-Atlantic bight distributed by temporal and spatial scale?

Methods

Terminal Restriction Fragment Length Polymorphism (TRFLP)

DNA Extraction
• DNA was extracted from sediment samples collected in LEO-15 site (1)
• Extractions were performed using a Chlortrifin-Phenol method
• DNA was cleaned using a CsCl gradient

PCR
• PCR reaction was done using one fluorescent label primer
• Primer used were \(752\text{F} (\text{ACC GAY GGS ACC TAY GAY GG})\) and \(1773\text{R} (\text{ATR TCG ATC ARC TGB TCG TT})\) (3)

Enzyme Digestion
• Enzyme MboI was used for the digestions

Cloning

• TOPO Cloning Kit was used to insert nosZ DNA fragment into a vector
• E.coli chemically competent cells were used, combined with a heat shock procedure, to transform the nosZ vector
• Cells grew on LB media plates and individual colonies were placed on 96 wall plates
• Clones were screened using TRFLP technique

Cloned Sample

• TRFLP data was translated into Excel and analyzed for how many times peak occurs among the samples
• Calculated frequency percentage in terms of times of a peak in sample/# of samples
• Peaks of interest were defined as those that were present in 90% or more of the samples

Results

TRFLP

Frequency Plot

Table: Sequencing Comparisons

<table>
<thead>
<tr>
<th>Peak Size</th>
<th>Match %</th>
<th>No. of Bases</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>662</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>206</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

• TRFLP data showed 15 abundant denitrifiers, defined by frequency of organisms, present in processed samples
• Sequencing and BLAST comparisons showed similarities with other marine organisms found off of the New Jersey coast
• Similarities were also demonstrated over a global scale
• More clones are being screened and sequenced to identify all dominant peaks and verify sequence identification

Reference

Acknowledgments

• National Science Foundation (NSF)
• RISE-Research Internship in Ocean Science
• RISE-Research in Science and Engineering
• Lee Kerkhof and Kerkhof Lab
• Lora McGuinness