Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation

Avijit Gangopadhyay a,*, Andre Schmidt a, Laurie Agel a, Oscar Schofield b, Jenifer Clark c

a School of Marine Sciences, University of Massachusetts and School for Marine Science and Technology, University of Massachusetts, Dartmouth, 200 Mill Rd, Suite 325, Fairhaven, MA 02719, USA
b Coastal Ocean Observation Lab, Institute of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08890, USA
c Jenifer Clark's Gulfstream, 3160 Lacrosse Court, Dunkirk, MD 20754, USA

A R T I C L E I N F O

Article history:
Received 29 April 2011
Received in revised form 15 September 2012
Accepted 26 September 2012

Keywords:
Glider data assimilation
Multiscale real-time forecasting
Observing simulation experiment (OSE)
Western North Atlantic
Mid-Atlantic Bight

A B S T R A C T

A recently implemented real-time ocean prediction system for the western North Atlantic based on the physical circulation model component of the Harvard Ocean Prediction System (HOPS) was used during an observation simulation experiment (OSE) in November 2009. The modeling system was built to capture the mesoscale dynamics of the Gulf Stream (GS), its meanders and rings, and its interaction with the shelf circulation. To accomplish this, the multiscale velocity-based feature models for the GS region are melded with the water-mass-based feature model for the Gulf of Maine and shelf climatology across the shelf/slope front for synoptic initialization. The feature-based initialization scheme was utilized for 4 short-term forecasts of varying lengths during the first two weeks of November 2009 in an ensemble mode with other forecasts to guide glider control.

A reanalysis was then carried out by sequentially assimilating the data from three gliders (RU05, RU21 and RU23) for the two-week period. This two-week-long reanalysis framework was used to (i) study model sensitivity to SST and glider data assimilation; and (ii) analyze the impact of assimilation in space and time with patchy glider data. The temporal decay of salinity assimilation is found to be different than that of temperature. The spatial footprint of assimilated temperature appears to be more defined than that of salinity. A strategy for assimilating temperature and salinity in an SST-glider phased manner is then offered. The reanalysis results point to a number of new research directions for future sensitivity and quantitative studies in modeling and data assimilation.

Published by Elsevier Ltd.

1. Introduction

Ocean observing has advanced in the last decade from a ship-based expeditionary science to a distributed and observatory-based approach. This transition, which has been occurring over last decade (Glenn and Schofield, 2003, 2009), reflects the maturation of a wide range of observation platforms, data assimilative numerical models, and improved global communications (Schofield et al., 2012). The expanding suite of observational assets include remote sensing (satellite: Halpern, 2000, aircraft: Blackwell et al., 2008, gliders: Sherman et al., 2001, Eriksen et al., 2001, Webb et al., 2001, drifters: Niler et al., 2003, floats: Davis et al., 1992, Gould et al., 2004). As the number of deployed platforms increases there is a growing need to aggregate the data and coordinate the sampling among the individual systems in order to create a system-of-systems. This will require the development of coherent software networks that allow a distributed group of sensors and/or scientists to operate as a group.

The integration of software systems is currently under development. For example, the U.S. National Science Foundation's Ocean Observatory Initiative (OOI, http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/) has focused a significant effort on developing a sophisticated cyberinfrastructure (CI) that binds the physical observatory, computation, storage and network infrastructure into a coherent system-of-systems. This CI is also being designed to provide a web-based social network, enabled by real-time visualization and access to numerical models, to provide the foundation for adaptive sampling science. The OOI cyber-development has chosen to utilize a spiral design strategy, allowing the oceanographic community to provide input during the construction phase with the strategy of utilizing existing ocean observing networks. For this effort, the OOI utilized an existing
2.2. Gliders

Slocum gliders are an autonomous underwater scientific platform (Webb et al., 2001) manufactured by the Teledyne-Webb Research Corporation. They are 1.8-m long, torpedo-shaped, buoyancy-driven vehicles with wings that enable them to maneuver through the ocean at a forward speed of 20–30 cm s⁻¹ in a sawtooth-shaped gliding trajectory. Each Slocum glider has a payload bay that houses a Seabird conductivity–temperature–depth sensor and includes space for a range of additional sensors. The glider acquires its global positioning system (GPS) location every time it surfaces, which is programmable and was set to call-in every 3 h for the purposes of this study. By dead reckoning along a compass bearing while flying underwater, estimates of depth averaged current can be calculated based on the difference between the glider’s expected surface location and the actual new GPS position. Depth averaged current measurements obtained in this manner have been validated against stationary Acoustic Doppler Current Profiler data (Glenn and Schofield, 2003).

During this experiment, four Webb gliders were deployed by Rutgers University and the University of Delaware. The gliders were deployed prior to the start of the experiment on Nov 1 2009 and operated for two weeks. During that period the gliders traversed 1673 km underwater collecting 23,332 vertical profiles. The data collected were analyzed for various process studies including phytoplankton productivity (Schofield et al., 2012) and sediment re-suspension during fall storms (Miles et al., in this issue).

2.3. Numerical model

One of the five numerical models employed during the OSE is the SMAST-HOPS (School for Marine Science and Technology—Harvard Ocean Prediction System) real-time forecast system, which has been operational since March 9, 2009, providing a 7-day ocean forecast for the large-scale Gulf Stream region from Cape Hatteras to 55 W, including the Gulf of Maine and the Mid-Atlantic shelf region. The other four models were: (i) the New York Harbor Ocean Prediction System (NYHOPS) for MARACOOS (Bhushan et al., 2009; Georgas and Blumberg, 2009); (ii) the regional ocean modeling system for MARACOOS (Wilkin et al., 2005); (iii) the regional ocean modeling system from USGS (Warner et al., 2008); and (iv) the MIT multidisciplinary simulation, estimation and assimilation system (MSEAS) (Lam et al., 2009; Haley and Lermausinga, 2010). The SMAST-HOPS operational system (described by Schmidt and Gangopadhyay, 2012, in this issue, SG12 henceforth; Brown et al., 2007a, b; Robinson et al., 2001) regularly assimilates satellite SST and, when available, MARACOOS glider-measured 4-D water properties to produce weekly 3-D nowcast and forecast MARACOOS regional temperature maps (see http://www.smast.umassd.edu/modeling/RTF/index.php). Four forecasts were provided during the OSE period, assimilating all available data from SST and the four gliders.

The horizontal structure of the SMAST-HOPS operational model domain consists of 131 × 83 grid points with 15 km resolution, extending from 30.5°N to 47.93°N in the meridional and from 80.54°W to 54.23°W in the zonal direction. The vertical structure of the model is resolved by 16 levels that are distributed according to a topography-following “double sigma” transformation described by Lozano et al. (1996) and Sloan (1996). The open boundary conditions for tracers and velocity are based on Orlanski (1976); and the horizontal subgridscale processes are parameterized using a set of scale-selective Shapiro filters: 4-1-1 (fourth order, one time, every time step) for velocity and tracers; a 2-2-1 for vorticity and 2-1-1 for streamfunction. The time step
Objective analysis parameters for glider data initialization and assimilation with a 12-h time window.

<table>
<thead>
<tr>
<th>Decay (km)</th>
<th>Synoptic</th>
<th>Mean</th>
<th>Assimilation</th>
<th>Synoptic</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero crossing (km)</td>
<td>60</td>
<td>180</td>
<td>30</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Time decay (day)</td>
<td>120</td>
<td>360</td>
<td>60</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

The operational forecasting system is built on the feature-oriented initialization scheme developed by Gangopadhyay et al. (1997) for the Gulf stream meander and ring (GSMR) region and for the Gulf of Maine and Georges Bank (GOMGB) region (Gangopadhyay et al., 2003). The feature-oriented methodology is explained in detail for the GSMR–GOMGB region by SG12, and has now been developed for many other regions of the world ocean including the South Atlantic (Calado et al., 2008), the Trinidad North Brazil current (Schmidt et al., 2011) and the California current system (Gangopadhyay et al., 2011). Briefly, FORMS methodology (Gangopadhyay and Robinson, 2002) requires (i) the development of analytical-empirical formulation of the synoptic-dynamic characters of features such as fronts, eddies, gyres and currents etc. called ‘feature models,’ and then (ii) implementation of a multiscale melding using objective analysis of calibrated synoptic feature models (with available satellite and in-situ data) with background mean state to create the “most knowledgeable” nowcast. For the MARACOOS implementation, the deep-water feature model set for GSMR (Gulf Stream, Deep western boundary current, warm and cold core rings, southern and northern recirculation gyres; see Gangopadhyay et al. (1997) for details) is melded with the shallow-water feature model set in the GOMGB region (Maine coastal current, Georges Bank tidal front, Wilkinson–Jordan–Georges basin gyres, northeast channel inflow and great south channel outflow; see Gangopadhyay et al. (2003) for details), and further supplemented with the Levitus climatology as the background in a multiscale objective analysis framework. The initialization field is dynamically adjusted with wind forcing and used in an SST-assimilative forecast model using the methodology described by Brown et al. (2007b). The model is forced with atmospheric fields (surface momentum flux, surface heat flux, surface water flux and shortwave radiation) from the global forecast system (GFS) at 0.5-degree resolution for 7 days. Several products are used for assimilated SST, including 3-day composite products from the Johns Hopkins University/Applied Physics Laboratory, AVHRR passes processed by the MARACOOS group at the University of Delaware College of Marine and Earth Studies, and daily and multi-day blended products from remote sensing systems. See SG12 for full details of this implementation and the model skill validation using drifters and GS axis locations from satellite observation.

While the OSE period was a test of the development and implementation of the cyberinfrastructure, the data collected during this period provided a valuable opportunity to reanalyze and understand various aspects of underlying processes and methodologies, which depend on data, models and model-data synthesis exercises. One of them is the focus of this paper, in which we assess the impact of glider data assimilation on the SMAST-HOPS model simulation. Such an exercise would make possible the design of better and more effective schemes for real-time assimilation utilizing satellite, glider and other in-situ observations in future OSEs.

Assimilation of data in numerical ocean models has been in practice for over couple of decades now (Carter and Robinson, 1987; Robinson et al., 1989; Derber and Rosati, 1992; Ezer and Mellor, 1992; Fukumori and Malanotte-Rizzi, 1995). A comprehensive set of studies on the different approaches to data assimilation in ocean modeling for the early nineteenth were compiled by Malanotte-Rizzi (1996). More recent advances in data assimilation include, among many, the works with the regional ocean modeling system (3DVAR and 4DVAR) (Li et al., 2008a, 2008b; Chao et al., 2009; Broquet et al., 2009; Veneziani et al., 2009), with the navy's coastal ocean model (Barron et al., 2007; Shulman et al., 2007, 2009), and with the Harvard Ocean Prediction System (Lozano et al., 1996; Lermusiaux, 1999, 2002; SG12) and the MIT multidisciplinary simulation, estimation and assimilation system (MSEAS) (Lam et al., 2009; Haley and Lermusiaux, 2010). With increasing computing power, more mathematically elegant and computationally demanding methods such as extended Kalman Filters, ensemble Kalman Filters (EnKF) are being adapted to ocean and atmosphere modeling at a rapid pace (Kalnay, 2003; Ott et al., 2004; Hunt et al., 2004; Kalnay et al., 2007; Evensen, 2009). However, while the techniques are improving, the availability of data for assimilation in the ocean models still remains sparse and infrequent. This necessitates generating suitable initialization and assimilation fields from a set of irregularly occurring observations in both space and time. Specifically, a set of decay scales in space and time (based on data auto-correlations) is generally applied to construct the initialization and assimilation fields (Mooers, 1999). It is also expected, that the impact of such patchiness would result in an assimilated field where errors will dominate away from the center of assimilation. In this study, we attempt to understand this impact facilitated by the availability of the patchy glider data set in a selective region in the reanalysis mode.

3. Assimilation of glider data in model forecasts

The sensitivity of the model simulations to glider data assimilation is examined over the two-week period (Nov 2 through Nov 16). This section describes the Gulf Stream system during the OSE period, the glider data and the initialization and assimilation protocols. Section 4 then describes the numerical experiments and the results.

3.1. The Gulf stream system during OOI–CI–OSE

The FORMS-based initialization for the SMAST-HOPS operational system requires an ocean analysis. This analysis for the western North Atlantic provides the surface characterizations of the locations, shapes and sizes of various features such the Gulf Stream, its rings, and the shelf-slope front. The specific product used for the SMAST-HOPS model is Jenifer Clark's Gulfstream (http://users.erols.com/gulfstrm/), which is a typical ocean analysis created primarily from the NOAA polar orbiting thermal infrared satellite imagery. The data are false-colored based on different sea surface temperatures. Other sources of data include altimetry, drifting and fixed buoys, model output, and sea surface isotherm analyses. The analyses extend from 50 W to 45 W and from 50 N to 30 N. The images are then subjectively analyzed by an oceanographic expert. They are generated once a week and have been analyzed since 1980. The analyses have improved over the years due to inputs and feedback from various stakeholders such as sailboat racers, coast guard search and rescue, fishermen,
scientists, forecast modelers, yacht deliveries, ocean rowers, swimmers, etc.

The week-long forecasts are issued generally by Wednesday morning; Monday 0-h is a typical model initialization state, with SST assimilation carried out on Monday afternoon or on Tuesday morning. The forecast fields (temperature, salinity, currents) are available at www.smast.umassd.edu/modeling/RTF/MARCOOS for different levels at 6-hourly intervals for the full domain, and for zoom domains of the Mid-Atlantic shelf and the Gulf of Maine. To provide high-resolution, nested forecasts for the mission control of the AUV and glider fleets, the forecast data in netCDF format (CF-compliant) were made available from the OPeNDAP-enabled THREDDS server http://aqua.smast.umassd.edu:8080/thredds/catalog/models/catalog.html.

The configuration of the Gulf Stream system on November 02, 2009, as the study period begins, is shown in Fig. 1. The left panel shows the Jenifer Clark analysis, with outlines of the Gulf Stream and its filaments spreading out to the recirculation gyres and each independent ring. During the OOI–CI–OSE, the Gulf Stream system north of 32$^\circ$N and west of 55$^\circ$W includes 6–7 warm and 6–7 cold eddies, and a large meander from 65$^\circ$W to 55$^\circ$W. The meander shifts and changes shape over the 2-week period as it absorbs a large warm core ring and casts off a cold-core ring. The SMAST-HOPS forecasts for Nov 2, 6 and 9 are shown in Fig. 1b–d. During these forecasts the SST and Glider data were assimilated in a strategic reanalysis to understand the behavior of assimilated fields after glider data assimilation.

3.2. Description of the glider sampling

The tracks of the gliders, showing the coverage area, are delineated in Fig. 2. The individual tracks for RU05, RU21, RU23 and UD134 are distinguished by color. The three Rutgers gliders

Please cite this article as: Gangopadhyay, A., et al., Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation. Continental Shelf Research (2012), http://dx.doi.org/10.1016/j.csr.2012.09.013

Fig. 1. Weekly Jenifer Clark analysis of Gulf Stream ring and eddy positions, with cold core rings and eddies noted as “ce” and warm core rings and eddies noted as “we” (top-left) for Nov 02, 2009. The SMAST-HOPS forecasts for Nov 2nd, Nov 6th and Nov 9th are shown in the other three panels.

Fig. 2. Tracks of the three gliders (RU05, RU21 and RU23) used for initialization and assimilation of the 02 Nov 2009 SMAST-HOPS run. The tracks span from 30 Oct 2009 to 17 Nov 2009. Glider UD134, not used in the HOPS model, is also shown. The points marked by south (S), middle (M) and north (N), are where the spatio-temporal impact analysis of glider data assimilation is carried out. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(RU05, RU21 and RU23) were deployed off the New Jersey coast on October 26, and moved across the shelf to near the 50-m isobath within the first 3–4 days. All of them were then used for CI–OSE control experiments (Schofield et al., 2010) and were guided in different directions before recovery. For example, after following the cross-shelf path, RU05 (red) was guided northward during Nov 6–9, then southward in the second week, and finally was recovered near Delaware Bay on Nov 17. RU23 (green) zigzagged during the OSE across the 50-m isobath and was recovered on Nov 17 near its original deployment site. RU21 (blue) started from the same location, moved in a northeastward direction and was engaged in sampling fine-scale features (Schofield et al., 2012, in this issue). UD134 (pink) was deployed later on Nov 6, followed a track similar to that of RU05 (red) for the latter part of the 2-week period, and was also recovered on Nov 17 2009. The sensitivity to assimilation was studied along the line of the black rectangles and is described later.

3.3. Initialization and assimilation methodologies with glider data

For the purpose of initialization, the temperature and salinity data from RU05, RU21 and RU23 between Oct 26 and Nov 2 were melded with the standard operational FORMS-derived initialization field (SG12). The melding was done by carrying out a multiscale objective analysis (OA) in which the synoptic glider data were statistically merged with the FORMS initialization following well-established procedure (Brown et al., 2007a; BG07 henceforth; SG12). The OA parameters, such as the correlation scale and decay scales of choice for the glider data, are summarized in Table 1. The total sampling coverage for Oct 26–Nov 1 is shown in Fig. 3a. This process of melding available glider observations over a week (or less) at initialization of the dynamical model run is also known as ‘assimilation at initialization.’

The sequential assimilation protocol for SST is explained in detail by SG12 (see their Section 3.3 and equation 1 therein). Briefly, the OI assimilation is a data-fusion methodology, where the observation (SST or Glider T/S) is assimilated in the model using a time-varying weighting function within each assimilation cycle. Subsequent glider data were assimilated at regular intervals of 12 h. Examples of glider data locations used for assimilation for a selected set of days are shown in Fig. 3b–f for Nov 4, 6, 8, 10, and 12, respectively. Initial fields of salinity and associated error fields are presented in Fig. 4. The contrast between glider salinity and climatology-derived background is much more pronounced than that between the corresponding temperature fields (not shown). This is because the assimilation of glider temperature is smoothed by the SST-assimilation from satellite observations. The subsurface projection of the satellite-derived SST field also helps reduce such contrast between glider and background temperature.

The weighting assimilation scheme for SST is described by BG07 and SG12 in detail. The weights for assimilating the glider data are presented in Fig. 5. Specifically, to allow for the internal dynamical adjustment of the assimilative variable, our approach is to distribute the field over a temporal window with variable weights. The 12-h Glider data is thus slowly amplified from its 20% value (weight of 0.2) on the 6th hour (prior to the observation hour) to its 90% value (weight of 0.9) on the 12th hour and then decays for next 6 h. This ramp-up and decay-down strategy is cycled every 12 h allowing for continuous and sequential assimilation of glider data within the observation window.

![Fig. 3. Position of glider data used in the (a) initialization of the SMAST-HOPS 02 Nov 2009 run, and the assimilation of glider data for (b) 04 Nov 2009, (c) 06 Nov 2009, (d) 08 Nov 2009, (e) 10 Nov 2009, and (f) 12 Nov 2009. The initial field incorporates data collected from 30 Oct 2009 to 02 Nov 2009. The assimilation fields incorporate 12 h of glider data, centered on 0000 UTC.](http://dx.doi.org/10.1016/j.csr.2012.09.013)
It is instructive to analyze the differences between the glider profiles and the objectively analyzed profiles. Overall, the mean rms differences between the OA and glider data for temperature and salinity are comparable for all the gliders at all depths (Fig. 6). The depth-averaged rms difference between OA and the glider for temperature (salinity) at the glider locations for RU05 is 0.275 degree (0.15 psu), for RU21 is 0.22 degree (0.13 psu) and for RU23 is 0.225 degree (0.12 psu). Most of the gliders collected data within 25–30 m depth, while the maximum depth of a particular glider was 63 m.

4. Analysis of post-assimilation fields in forecast mode

This section describes the assimilative forecasts and their analyses in understanding the impact of assimilation from a spatial and temporal footprint perspective.

4.1. Description of assimilative forecasts

The effect of the glider data assimilation on the forecasts is presented next (Figs. 10–18). In the SMAST-HOPS assimilation strategy, in which glider data is assimilated every 12 h, objectively analyzed fields with appropriate error fields are first computed. The multiscale OA uses the data in the observational window of ±12 h, and uses the initial field of Nov 2 as the background. This choice of background avoids discontinuities between glider data and climatological background.

Two parallel runs were carried out. Both runs were initialized with the FORMS methodology (SG12). Furthermore, glider data for the initial period of October 26 through Nov 1 were objectively analyzed with the FORMS-derived temperature and salinity fields to produce the reanalysis initial field. The first run was then carried out with satellite-derived SST assimilation only during the first 12 h of simulation for Nov 2 and then continued without further assimilation of glider data (temperature and salinity). This run is designated as “Run1.” This run can be described as a run with assimilation of the glider data at initialization.

Another run was done with successive assimilation of temperature and salinity data from gliders RU05, RU21 and RU23.
The satellite-derived SST assimilation methodology is very similar to that described by SG12. Additionally, glider data was assimilated following the methodology described in Section 3. This run is designated as “Run2.” Following SG12, the initial field was adjusted for SST assimilation on the first cycle (12 h), which also assimilated the temperature and salinity from the gliders between Oct 26 and Nov 2. The evolution of temperature at 25 m overlaid with velocity for the assimilation run (Run2) for the first week is presented in Fig. 7. The evolution of salinity at 25 m overlaid with velocity for the second week is shown in Fig. 8.

The initially weak velocity field develops and adjusts to about 0.1 m s⁻¹ of southwestward flow along the shelf between the 50- and 100-m isobaths, while an anticyclonic recirculation develops between 38°N and 39°N (not shown). The weak southward flow to the north of the glider confluence region (Fig. 7) dissipates by Nov 3–5, when a broad northwestward wind-induced flow occurs over the glider region (not shown). During Nov 5–7, the passage of a southwesterly storm was reported. The expansion of glider data assimilation is greatest (in terms of areal coverage) on Nov 7 (Fig. 7). The velocity field adjusts to an

Please cite this article as: Gangopadhyay, A., et al., Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation. Continental Shelf Research (2012), http://dx.doi.org/10.1016/j.csr.2012.09.013
anticyclonic eddy-like shelf feature over the glider region (Fig. 7) by Nov 9 to the north of the steady southwestward along-shelf flow.

Fig. 9 shows a sectional view along line AA (Fig. 7) of the evolution of salinity during Nov 3–9. The initial shelf field is dominated by a shallow patch of relatively fresh water (S/C24 32–33 psu) (Fig. 9a). The contrast between this patch of fresh water and the higher-salinity water from climatological fields creates the salinity front (33–34 psu) between 60 km and 80 km offshore. Most of the glider data assimilated during Nov 3–5 has a uniform vertical profile. As assimilation progressively captures the low-salinity data, the frontal boundary between the near-coastal fresh water and offshore saline water moves gradually offshore and becomes tighter. The salinity front is visible between 80 km and 100 km offshore on Nov 5 and stabilizes at this location (Fig. 9b). The dynamical model shows further relative freshening of the offshore isohalines between 100 km and 150 km offshore during the latter part (Nov 7 through Nov 9) of the simulation (Fig. 9c and d). Note that the Jenifer Clark satellite analysis shows a possible intrusion around an anticyclonic shelf eddy near the glider assimilation region on Nov 6 (Fig. 10). However, in the dynamical model, the eddy was non-existence, as the model was initialized with the canonical shelf-slope front competes against the freshening and cooling induced by the assimilation of glider observations. Effectively, in the shallow inshore region, the dynamical model develops a weak signature of a fresher and cooler patch on the shelf. Had there been more observations around this area, one would then expect to capture dynamical events like “overrunning” (Kumar et al., 2006), which are deeper and closer to shelf-break.

The evolution of temperature during the week of Nov 2–9 is examined next (Fig. 11a–d) along the cross-shelf section indicated in Fig. 7. Since the SST from satellite images is also assimilated with a vertical projection algorithm, initial contrast between the cooler shelf and warmer offshore water decays rapidly. By day 3 of the assimilation, the temperature range on the shelf (< 50 m) reduces to 14–15.3 °C (Fig. 11b and c) from the initial range of 14–16.5 °C (Fig. 11a). The signature of a significant front at about 150–200 km offshore (Fig. 11a) dissipates by day 3.

The weak signature of shelf water intrusion (evident in observation as shown in Fig. 10) across the shelf-break into the slope sea is visible in the temperature field by day 6 and also evident in the day-7 forecast at 60 km offshore (Fig. 11). The center of the simulated anomalous patch is cooler (14.1 °C) than its edges (14.7 °C) (Fig. 11d) at the surface. The patch is also fresher at the core, and the inshore salinity gradient is weaker than its offshore counterpart.

The impact of temperature and salinity assimilation of glider data during the first week is examined next (Figs. 12 and 13) along the north-south section (line B of Fig. 8). In the salinity section (Fig. 13a), the far-field impact of assimilation of the three drifters (RU05, RU21 and RU23) is evident in the fresh water signature near the middle of the section, bounded by the
climatological high-salinity patches. During the first week of the assimilation, the three gliders progressively sample the waters near and along this section, and the waters become fresher and colder due to assimilation. The vertical homogeneity of this assimilated water mass is strikingly different when compared to the unassimilated fields (not shown), which are generally more saline and warmer.

Further evolution of temperature and salinity along the north-south section (shown as B–B in Fig. 8) for the second week is shown in Figs. 14 and 15. This section follows the glider tracks of RU05 and UD134 during the second week of the OSE. Note that while the data from RU05 was assimilated into the model, the data from UD134 was used only for comparing the assimilated model results as an independent validation. The initial high-salinity patches are replaced by realistic fresher water on the shelf through subsequent glider data assimilation within the first week.

The weak signature of the shelf water intrusion across the shelf-break into the slope water, as discussed earlier, is also captured in the forecast fields of temperature (Fig. 14) and salinity (Fig. 15) of day 8 km, 100 km south of the northern end of the section. The subsurface saltier waters to the north and south are due to recirculation generated by the dynamical simulation.

4.2. Time-series comparison of Simulations against glider data

Fig. 16 shows a comparison of time-series of temperature and salinity of the assimilated reanalysis against the three gliders at 25 m. The simulated temperature and salinity profiles of the data-assimilative model are compared with the actual glider profiles at glider locations every half-hour. The assimilation evidently captures the inertial and sub-inertial variability reasonably well (Fig. 16). Difference in the initial 1–2 days between the assimilated simulation and glider data can be attributed to the possible mismatch between the satellite-derived SST (and its extrapolation

Fig. 9. Salinity cross sectional view of shelf along section line A–A, shown in Fig. 10 for 02 Nov 2009 SMAST-HOPS run with glider assimilation. Panels valid for (a) 03 Nov 2009, (b) 05 Nov 2009, (c) 07 Nov 2009, and (d) 09 Nov 2009.

Fig. 10. Possible intrusion of shelf water into the slope during the OSE period. The image analysis is for Nov 6, 2009. Location of glider RU05 (RU23) is shown by the blue (red) dot in upper panel for Nov 6, 2009. The two sectional lines, A–A from Fig. 10, and B–B from Fig. 11, are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Temperature cross sectional view of shelf along section line A–A, shown in Fig. 10 for 02 Nov 2009 SMAST-HOPS run with glider assimilation. Panels valid for (a) 03 Nov 2009, (b) 05 Nov 2009, (c) 07 Nov 2009, and (d) 09 Nov 2009.

Fig. 12. Temperature cross sectional view of shelf along section line B–B, shown in Fig. 11 for 02 Nov 2009 SMAST-HOPS run with glider assimilation. Panels valid for (a) 02 Nov 2009, (b) 04 Nov 2009, (c) 06 Nov 2009, and (d) 09 Nov 2009.
Fig. 13. Salinity cross sectional view of shelf along section line B–B, shown in Fig. 11 for 02 Nov 2009 SMAST-HOPS run with glider assimilation. Panels valid for (a) 02 Nov 2009, (b) 04 Nov 2009, (c) 06 Nov 2009, and (d) 09 Nov 2009.

Fig. 14. Temperature cross sectional view of shelf along section line B–B, shown in Fig. 11 for 02 Nov 2009 SMAST-HOPS run with glider assimilation. Panels valid for (a) 10 Nov 2009, (b) 12 Nov 2009, (c) 14 Nov 2009, and (d) 16 Nov 2009.
to depth with a mixed-layer-dependent formulation) and glider temperature (and its vertical uniformity in shallow waters).

Differences between assimilated salinity and glider data can be attributed to the initial mismatch of climatological average salinity with glider data. In all cases, the assimilated temperature and salinity tends to match with glider observations after this initial 1- to 2-day period of internal adjustment (Fig. 16).

Fig. 17 shows a time-series comparison of UD134 data against assimilated forecast at available locations as an independent measure of model skill. The comparison is shown for forecast days 6 and 7. Note that the large biases of the non-assimilated temperature and salinity from the climatology-based shelf initialized run are on the order of 2 °C and 1 psu, respectively. This comparison points to the need for glider assimilation for monitoring the shelf circulation in the Mid-Atlantic Bight region.

The rms differences between the assimilated and non-assimilated runs and the glider data for various depths are shown in Fig. 18. It is apparent that the errors are depth-independent after assimilation. This is probably an artifact of most of the glider data being vertically uniform. However, the depth variation of the unassimilated differences indicates the possibility of assimilation having a bigger impact in the subsurface than at the surface due to glider data. This might be due to the lesser variability at depth than at surface, accentuating the impact of assimilation in the subsurface fields.

However, there are two other ways the glider data could show more impact on the subsurface than on the surface. The first is that SST is being assimilated prior to glider data assimilation, which should make the surface temperature in the model move closer to the glider observation at the surface, leaving the subsurface temperature un-corrected. Thus, the impact of temperature assimilation may seem larger after correction at subsurface (although, not so for salinity correction). Second, the observed Glider profiles for November 2009 depicts a well-mixed, almost-constant profile of temperature and salinity, while the climatological profiles at these locations, which the model used for initialization had stratification, aka, more subsurface variability. So, after assimilation, the subsurface impact seems larger than that at the surface.

Furthermore, averaged over the two-day (Nov 8–10) time period, the salinity difference between assimilated and non-assimilated runs is about 0.5 psu (Fig. 17b), while the temperature deviation is about 2 °C (Fig. 17a). Since the salinity difference is comparable to the range of assimilation rms (Fig. 18b) of 0.4 ppt, while the SST difference of 2 °C is an order of magnitude higher than the temperature assimilation rms (0.2 °C, Fig. 18a), it is conceivable that salinity assimilation might affect the water column for a longer time period.

4.3. On the temporal and spatial decay of the assimilation footprint

The nature of the decay of the impact of temperature and salinity assimilation is examined next. To determine the temporal decay footprint, we chose two assimilation locations, one offshore (O) and another inshore (I). The OA contours of assimilation errors are presented in Fig. 19a and b, for Nov 6th and 10th, which show the coverage of assimilation for those respective dates. These two locations allowed for tracking the temperature and salinity decay...
scales after the peak of assimilation (marked by arrows in the figures on the error time-series) on Nov 8th for point I (Fig. 19c and e) and after Nov 6th for point O (Fig. 19d and f).

Effectively, there was a single assimilation window of about 2 days for I (Nov 6–8); while for point O, there were two assimilation windows: one for about two days (Nov 4–6) and another also for a different two days (Nov 12–14) at the end of the reanalysis period. The assimilation of satellite-derived SST during the first 12 h, and the ingestion of available glider data at initialization, induced similar impact up to about 0.75 day to both unassimilated and assimilated simulations (Fig. 19c–f). The assimilation during Nov 4–6 then corrects the developing forecast, while the unassimilated forecast behaves differently. After this initial phase, the assimilated temperature takes about
1–2 days to degrade to the levels of non-assimilated run, while salinity takes 3–4 days for point I and about 2 days for point O. The temperature decay time-scales are similar to those (1–1.5 days) obtained for Monterey Bay by Shulman et al. (2009).

Two interesting results are clear from Fig. 19. First, after the assimilation is over, the salinity tends to approach back to the unassimilated value in time, while the temperature settles to a new threshold level and follows the behavior of the unassimilated temperature simulation. Second, the larger the difference between the unassimilated simulation and observation (at the beginning of the assimilation), the longer it takes for the tracer to approach the unassimilated behavior and/or the value itself. Note that we also found these two results to be depth-independent.

The spatial scales of decay for the impact of assimilation are investigated next. Three points (South—S; Middle—M; and North—N) were chosen along one transect through the glider array (Fig. 2) for the spatial decay experiment. The daily difference in temperature field between the runs with and without assimilation is presented in Fig. 20a. Greater difference at the time of assimilation is over, the salinity tends to approach back to the unassimilated value in time, while the temperature settles to a new threshold level and follows the behavior of the unassimilated temperature simulation. Second, the larger the difference between the unassimilated simulation and observation (at the beginning of the assimilation), the longer it takes for the tracer to approach the unassimilated behavior and/or the value itself. Note that we also found these two results to be depth-independent.

The spatial scales of decay for the impact of assimilation are investigated next. Three points (South—S; Middle—M; and North—N) were chosen along one transect through the glider array (Fig. 2) for the spatial decay experiment. The daily difference in temperature field between the runs with and without assimilation is presented in Fig. 20a. Greater difference at the time of assimilation is over, the salinity tends to approach back to the unassimilated value in time, while the temperature settles to a new threshold level and follows the behavior of the unassimilated temperature simulation. Second, the larger the difference between the unassimilated simulation and observation (at the beginning of the assimilation), the longer it takes for the tracer to approach the unassimilated behavior and/or the value itself. Note that we also found these two results to be depth-independent.

The exponential nature of the spatial decay of temperature impact from the center of assimilation outward is evident for all days (other days not shown). The e-folding impact scale is determined to be about 100 km for the third day, and about 60 km for the fourth day. In contrast, the salinity signal does not show any preferential decay pattern (Fig. 20d). The salinity difference fluctuates within a narrow range around the initial difference for day 3, and stays almost same for day 4. No consistency spatial-decay pattern for salinity was found in these three locations.

The above differences in the temperature and salinity behavior beget the idea of using different decorrelation parameters for objective analysis of temperature and salt information for assimilation. For example, different decorrelation scales for temperature and salinity error covariance computation were used (Reinicker et al., 2011) by the Global Modeling and Assimilation Office (GMAO) at the NASA/Goddard Space Flight Center for ocean initialization for seasonal-to-interannual climate prediction efforts (http://gmao.gsfc.nasa.gov/research/ocean; Keppenne et al., 2005; Sun et al., 2007). Typically, temperature decorrelation scales (20’ zonal, 8’ meridional and 100 m in the vertical) are larger than those for salinity (8’ zonal, 3’ meridional and 40 m in the vertical). Our results indicate similar
qualitative differences in spatial impact of assimilation between temperature and salinity might also exist in the shelf region, albeit at a finer-scale (10s of kilometers for the shelf as opposed to 100s of kilometers for the global models).

5. Summary and discussion

This study presented an application of the SMAST-HOPS real-time forecast system developed for the western North Atlantic during the OOI–CI OSE period (Oct 26–Nov 17, 2009). The ring and front analysis from satellite imagery is used to feed into the feature modeling scheme for generating a three-dimensional initial field. The initial field is dynamically adjusted with wind-forcing and used in an SST-glider-assimilative (temperature- and salinity-assimilative) forecast model. The model was forced by atmospheric fields from the global forecast system in real time. The forecast fields were made available via a THREDDS data server for easy and efficient extraction by scientists and application developers for glider planning, control and guidance.

The feature-based initialization scheme was utilized for 4 short-term forecasts of varying lengths during the first two weeks of November 2009 in an ensemble mode with other forecasts to guide glider control. A reanalysis was then carried out, assimilating the data from three gliders (RU05, RU21 and RU23) for the two-week period. Results are first compared against data from these three gliders, and then against the independent data from the other glider, UD134. Results from the assimilation are also analyzed to evaluate the impact of glider data and sensitivity of model forecasts to data assimilation. The assimilation of salinity improved the model performance in the area around the data and impacted the subsurface fields. An interesting result was that assimilating (or infusing) the available glider data at initialization enabled the model to smoothly absorb and adjust subsequent cycles of assimilation of patchy glider data.

The glider data assimilation led to a depth-averaged model-data difference of 2 °C for temperature and 0.5 psu for salinity for the upper 25 m of the Mid-Atlantic shelf. A sensitivity analysis was carried out to determine the short-term memory of the simulated ocean. The forecast fields retained assimilated temperature information for about 1–2 days. No coherent pattern for temporal decay of salinity was determined with its range varying from 1–4 days at different locations. However, significant differences in their patterns of behavior after assimilation were clearly observed.

It is interesting to note that the short-term retention period (of temperature and salinity impact) might be increased by

Fig. 19. Temporal behavior of temperature and salinity after assimilation. The error maps of OA fields (T, S) are shown for 4th Nov in (a) and for 10th Nov in (b). The simulation time-series with and without assimilation are shown for temperature at point I and point O are shown in the middle panels ((c) and (d)). Superimposed is the time-series of the error at these locations in dash-line. Similarly, the bottom panels show the salinity fields at these locations. The black arrow in the middle and bottom panels identifies the end of the assimilation period at each location.
increasing the model resolution in the horizontal and vertical. While increasing the resolution will result in resolving more features (effectively adding more wave numbers and reducing the de-correlation scales); the underlying OI assimilation scheme brings high-resolution assimilation (correction) fields, because the observations are mapped on the model grid prior to assimilation. Such sensitivity/competition studies would be carried out in future studies. Our results on temporal decay (1–3 days) of temperature after assimilation are consistent with those (1–1.5 days) found by Shulman et al. (2009) for the Monterey Bay region. It is intriguing to also note that one would expect a sizeable difference in the decay scales of temperature and salinity linked to the underlying real (molecular) diffusivity of the variables. In reality, the short-term temporal memory of the ocean could be thought to be inversely proportional to the diffusivity of the tracer. For example, due to its slower diffusivity, the retention period of assimilated salinity signature may be longer than that of the temperature. Similarly, the spatial footprint of the impact could be directly proportional to the diffusivity. Consequently, the spatial decay scale for assimilated temperature would be larger than that of the assimilated salinity signal (consistent with Reinicker et al. 2010 for GMOA). However, most of the dynamical models (including the present one used here) employ the same numerical diffusivity for the prognostic runs, which might or might not be appropriate for both tracers. More sensitivity experiments would be necessary to further quantify and understand such differences between the temperature and salinity response after assimilation.

The impact analyses presented before clearly shows that there exists certain differences in the spatial and temporal influence windows (scales, footprints) after assimilation for the two tracers, temperature and salinity. These new results open up the possibility of developing new assimilation algorithms which might be similar to the new developments of the EnKF, where variables maintaining two different scales are assimilated in a combined scheme (Ballabrera-Poy et al., 2009). The ideas of scale-preserving assimilation (Lorenc, 2003; Kalnay et al., 2007) and of ‘variable localization’ for constructing covariance matrix in EnKF (Kang et al., 2011) seem worth investigating in this context of multiple tracers. Specifically, temperature and salinity could be the oceanic proxies for the temperature and carbon (and/or humidity) in the atmospheric models and these new assimilation techniques.

These differences in impact of assimilation of temperature and salinity data and their possible link to the real-ocean diffusion of heat and salt also points to another area of research. Typical large-scale models (Navy’s coastal ocean model, hybrid co-ordinate ocean model, regional ocean modeling system, modular ocean model, etc.) use the same diffusivity for both tracers for most applications. Systematic studies with different diffusivities for different tracers in regional modeling exercises in coastal regions such as the Mid-Atlantic shelf might lead to better understanding of processes and better forecasting capabilities for the many operational observing systems.

Based on the sensitivity analysis, a phased-assimilation strategy to assimilate both satellite SST and glider data with different weighting functions for temperature and salinity can probably be developed. For example, while 2-day composite satellite-derived SST fields can be assimilated every two days, individual glider data could be assimilated every day with a 12-h weighting function. However, if salinity data can be retained by the simulated ocean for a longer period of time, independent salinity observations, or satellite-derived chlorophyll-inferred seas surface salinity can be assimilated with different weighting function (yet-to-be-determined) on a different assimilation cycle. Another example would be of designing a phased observation-assimilation scheme, in which XBT
observations will be assimilated frequently to supplement SST fields to realize the subsurface thermal structure, while XCTD observations will be sampled and assimilated more sparsely to match and allow for larger retention period of salinity. In the near future, such a system of “phased assimilation” of satellite SST, sea surface color (SSC), glider data and other in-situ observations could be built for monitoring the changes of the water masses in the Mid-Atlantic more efficiently, economically, and knowledgeably.

Acknowledgements

This real-time forecast system has been made possible due to many years of research at Harvard University, UMass Dartmouth, MIT and other institutions by many researchers. We appreciate all of their past efforts and current support. Special thanks are due to our colleagues at MIT who are supporting our efforts with the software and analysis packages. Funding was made available from the Office of Naval Research (ONR) MURI program (N000140610739), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA) and the National Science Foundation (NSF) at different times to different PIs at different institutions. We acknowledge all their efforts and support. Current funding from NOAA under IOOS for MARACOOS and the support of the MACOORA group are gratefully appreciated. We appreciate the efforts of Applied Science Associates and the Rutgers group for making the glider data available in a format for easy analysis. Our special thanks to Dr. Wendell Brown for his insight in implementing an earlier version of the model system and many discussions in-house on the OSE–Glider-modeling exercises. We appreciate the help, support and guidance of Drs. Scott Glenn, Bill Boicort and the entire MARACOOS group during the OSE. Special thanks to John Kerfoot for his work in making the glider data available in real-time. We thank the other five modeling teams from Rutgers (John Wilkin and his group), Stevens (Alan Blumberg and his group), JPL (Yi Chao and his group), MIT (Pierre Lermusiaux and his group) and USGS (Rich Signell, John Warner and their group), with whom we participated in the OSE real-time ensemble exercises. We wish to acknowledge the invaluable experience gathered during the OOI–CI–OSE on the infrastructure issues of real-time forecasting from the interactions with the JPL, UCSD and the larger CI team. We are appreciative of the help provided by Mr. Frank Smith at SAST with editing this manuscript. Our sincere thanks to the reviewers and the editors of this special issue for their comments, patience and support during the revision of this manuscript, which helped clarify many details.

References

Please cite this article as: Gangopadhyay, A., et al., Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation. Continental Shelf Research (2012), http://dx.doi.org/10.1016/j.csr.2012.09.013