AQUACULTURE (11:628:317, 3 credits)

Instructors
 Professor Ximing Guo
 Professor David Bushek

Prerequisites
 Special permission number, contact Instructors

Course Materials
 None; reading material and reference books are provided

Fees
 $200 per student to cover dorm ($150) and other expenses ($50)

Topics
 Introduction to aquaculture/basic requirements
 United States aquaculture
 Asian aquaculture
 Global aquaculture
 Seaweeds and phytoplankton culture
 Molluscan shellfish culture
 Crustacean aquaculture
 Major finfish/Salmon/Catfish/Tilapia culture
 Koi and ornamental/aquarium aquaculture
 Nutrition and growth
 Disease
 Genetics
 Sanitation
 Aquaculture economics

Field Trips
 Rutgers Aquaculture Innovation Center
 Cape Shore Oyster Hatchery
 An active oyster farm
 An active koi farm
 Shellfish packing/shucking houses

Laboratory Projects
 Recirculating systems: general construction and maintenance
 Shellfish and/or finfish culture: spawn and/or raise animals and planktonic food
 Disease diagnostics: gross pathology, histology, RFTM assay, condition index
Course Learning Goals and Assessment

The Learning Goals for the Marine Science Program are posted on our website at http://marine.rutgers.edu/main/academics/undergraduate/program-description. The learning goals for this course apply to Program Learning Goal 1 (master the basic biological, chemical, physical, and geological principles of marine science), Goal 3 (show evidence of scientific literacy, and communicate the information effectively both orally and in writing), and goal 5 (evaluate contemporary global issues and the ethics of how the ocean’s resources are used).

Students completing this course will be able to:

Goal A. Evaluate major aquaculture species and culture practice worldwide
 Instructional Activities: lectures, assigned readings, in-class discussions
 Assessment Method: performance on exams and assignments

Goal B. Make use of basic aquaculture practices and related techniques through laboratory exercises
 Instructional Activities: laboratory exercises, lectures, in-class discussions
 Assessment Method: lab reports and worksheets

Goal C. Evaluate the use of GMOs and Biotechnology in aquaculture
 Instructional Activities: field trips, lectures, labs, in-class discussions
 Assessment Method: performance on exams, reports and assignments

Goal D. Discuss how aquaculture (including use of non-native species) impacts the environment
 Instructional Activities: field trips, lectures, in-class discussions
 Assessment Method: performance on exams, reports and assignments

Grading
 Participation and Discussion 10%
 Lab reports, homework, worksheets 25%
 Final Exam 40%
 Term-paper 25%