The Southern Ocean Biological Response to Aeolian Iron Deposition
Nicolas Cassar,1* Michael L. Bender,1 Bruce A. Barnett,1 Songmiao Fan,2 Walter J. Moxim,2 Hiram Levy II,2 Bronte Tilbrook3

Biogeochemical rate processes in the Southern Ocean have an important impact on the global environment. Here, we summarize an extensive set of published and new data that establishes the pattern of gross primary production and net community production over large areas of the Southern Ocean. We compare these rates with model estimates of dissolved iron that is added to surface waters by aerosols. This comparison shows that net community production, which is comparable to export production, is proportional to modeled input of soluble iron in aerosols. Our results strengthen the evidence that the addition of aerosol iron fertilizes export production in the Southern Ocean. The data also show that aerosol iron input particularly enhances gross primary production over the large area of the Southern Ocean downwind of dry continental areas.

The rate of organic matter export from the surface waters of the Southern Ocean has an important impact on distributed properties of the environment. First, it influences the residual nutrient burden of waters that flow northward in the subsurface to supply nutrients to much of the extratropical ocean (1). Second, carbon export removes CO2 from surface waters, thereby influencing the atmospheric CO2 concentration over both glacial-interglacial and anthropogenic time scales. There is compelling evidence that iron supply from a number of sources (such as coastal sediments, aerosols, upwelling, ice melting, and enhanced mixing over high topography) influences rates of both gross production and carbon export by Southern Ocean ecosystems. Ocean color data, for example, show that biomass is elevated downwind of aeolian iron sources, and extraordinary “patch” experiments have shown that iron addition enhances primary production and new production in several representative regions (2).

To understand the potential for aeolian iron fertilization, we compared a large number of net community production (NCP) measurements in the Southern Ocean (3, 4) to a modeled Fe deposition (5). NCP and gross primary production (GPP) are calculated as the production rates required to maintain the observed biological O2 supersaturation (derived from O2/Ar) and O2 triple-isotope anomaly against equilibration by gas exchange (parameterized in terms of wind speed) (6). NCP from O2 is the stoichiometrically equivalent rate of organic carbon production in excess of respiration; it approximates carbon export from the mixed layer. Our data set establishes the pattern of this fundamental rate process in the Southern Ocean at a scale here-tofore accessed only for chlorophyll, which reflects biomass. We implemented these methods with samples of water from the upper-ocean mixed layer. Samples were collected by us or collaborators on cruises of opportunity and returned to the laboratory for analysis; in this way, it was possible to assemble a very large data set.

Our approach to determining NCP and GPP has distinct attributes and limitations. The method accesses production over times on the order of 1 week, corresponding to the mixed-layer depth divided by the piston velocity. We assumed steady-state mixed-layer depth and productivity (clearly a simplification). We ignored exchange between the mixed-layer and underlying waters. The analysis of Wang et al. (7) suggests that, in the Polar Front Zone and the Subantarctic Zone, this process is of minor importance in the summer and in the spring. When the flux of O2 is into the ocean, we report negative values of NCP. Although we refer to the air-sea biological O2 flux as NCP, we were unable to determine whether negative values reflect net heterotrophy in the mixed layer or upwelling of O2-undersaturated waters.

Figure 1 shows summer NCP values superimposed on Southern Ocean properties (8). Most of the Southern Ocean can be considered a high-nutrient low-chlorophyll region, with the caveat that the area north of the Antarctic Polar Front (APF) is depleted in silicate during summertime. The strong westerlies around the Antarctic continent drive a northward Ekman transport of nutrient-rich circumpolar deep waters that upwell south of the APF. From the south, the Antarctic Zone lies between the Southern Boundary of the Antarctic circumpolar current and the APF, the Polar Front zone stretches from the APF to the Subantarctic Front, and the Subantarctic Zone extends from the Subantarctic Front to the Subtropical Front. The Subtropical Front is the boundary between the warm and salty subtropical waters and the relatively cooler and fresher waters of the Southern Ocean. The summertime chlorophyll distribution is shown by the background colors of the map (Fig. 1).

We observed that, in general, NCP rises toward the north (Figs. 1 and 2), with considerable spatial heterogeneity. Visual inspection, along with the statistical analysis of Reuer et al. (4), shows that NCP is weakly correlated with climatological satellite chlorophyll estimates. Our results also show higher NCP and GPP in the spring than in the summer over most of the Southern Ocean (9) (Fig. 2). Our approach underestimates NCP in upwelling areas, where mixing to the surface of O2-depleted waters lowers the biological O2 supersaturation. For this reason, the apparent poleward decrease in NCP could partially be driven by upwelling of upper circum-

References
14. We have revised the total area of GIC from 785 × 10^3 km2 to 763 × 10^3 km2 because of an overestimate of the glaciers peripheral to Greenland Ice Sheet. This adjustment has been applied throughout.
19. Because there are many areas without complete inventories of GIC sizes, we used two estimation processes to fill gaps. First, we used an estimate of the probability of the number of glaciers greater than a certain area versus that area, based on percolation theory and on known size distribution relations. The error in this process for a global total was estimated at about 13% (13). Next, we estimated the thickness of GIC based on power-law scaling with glacier area. Without sufficient independent data, it is difficult to estimate the error in the method. We estimated that the error in calculating thicknesses and thus volumes from area values is on the order of 25% for global aggregates (13) but far greater, on the order of 50%, for individual ice masses.
1. Nicolas Cassar,1* Michael L. Bender,1 Bruce A. Barnett,1 Songmiao Fan,2 Walter J. Moxim,2 Hiram Levy II,2 Bronte Tilbrook3
*To whom correspondence should be addressed. E-mail: ncassar@princeton.edu

www.sciencemag.org SCIENCE VOL 317 24 AUGUST 2007
polar deep water south of the APF. However, we believe that part of this poleward decrease accurately reflects the gradient in mixed-layer fertility because chlorophyll concentration, as well as our 17O-based estimates of GPP (which are less affected by upwelling), show a similar trend (Fig. 2).

We considered three properties that, individually and in combination, influence spatial variability of summertime Southern Ocean productivity: Si(OH)$_4$, light, and iron. Si(OH)$_4$ undoubtedly limits diatom production at certain times but cannot account for the pattern of GPP and NCP that we observed: It is replete only in southern waters, but production is highest in the north (4). In addition, because of diatom Si:C plasticity, limitation of Si(OH)$_4$ uptake does not necessarily entail carbon-specific growth limitation (10). The mixed layer is sometimes light-limited because deep mixed layers, with lower mean irradiance, are typical of the Southern Ocean. However, a comparison of our summer NCP measurements to climatological photosynthetically active radiation within the mixed layer shows no statistically significant correlation (fig. S1).

Iron might account for meridional variability in open ocean production in one of three ways. First, if the source of iron is upwelled subsurface waters, production should be elevated near the zone of upwelling—mainly around and south of the APF. Indeed, there is some evidence for higher production at the APF. However, as water upwells south of the APF and flows northward in the Ekman Drift, we do not observe the predicted decrease in production, which theoretically would be caused by removal of iron by scavenging and carbon export. Furthermore, studies from the Australian and Pacific sectors of the Southern Ocean agree that the mixed-layer Fe concentration increases, rather than decreases, toward the north (11–13). This iron increase to the north is accomplished by rising relative variable fluorescence as measured by fast repetition rate fluorometry (14, 15). Relative variable fluorescence is positively correlated to in situ Fe concentration in the Southern Ocean (14). In addition, phytoplankton communities north of the APF do not respond as strongly in Fe enrichment experiments as the ones south of the APF (15).

Second, if the source of iron is seasonal or annual aerosol input, production should be correlated to long-term average Fe deposition. Given a plausible residence time on the order of 5 months (calculated for the Subantarctic Zone assuming soluble iron deposition = 0.06 μmol m$^{-2}$ day$^{-1}$, mixed-layer depth = 30 m, and mixed-layer [Fe] = 0.3 nmol kg$^{-1}$), the dissolved Fe concentration will reflect aerosol deposition near the sampling point, which we neglect here. In Fig. 3A, we plot NCP versus the annual iron deposition rate at the sampling location computed by Fan et al. (5). Their model, driven by analyzed meteorological properties, simulates chemical changes occurring in aerosols that increase Fe solubility with atmospheric transport time (Fig. 4A). This increase in Fe solubility exerts a first-order control on aerosol Fe input to the oceans (16). Relative to a model assuming that a constant fraction of iron dissolves, models invoking chemical transformations predict diminished soluble Fe addition near dust sources and enhanced delivery in remote regions (Fig. 4B). Uncertainties in the entrainment rates of dust in the source areas and the fraction of soluble iron in settling aerosols introduce important errors into rates of soluble iron deposition simulated by the model. There is clearly a strong correlation between NCP and annual Fe deposition ($r = 0.60, df = 381$; Fig. 3A).

Third, if the source of iron is synoptic-scale deposition, production should be correlated with the deposition rate during some recent period. The correlation coefficient between NCP and soluble iron deposition is a maximum when iron deposition is averaged for a period of 14 days before sampling ($r = 0.53, df = 381$; Fig. 3B), decreasing only slightly with longer averaging times (6). This period may be shorter than the average residence time. Nevertheless, synoptic-scale events would lead to variability of about 25% in the ambient iron concentration given transient doublings and halvings of the soluble iron input with a 30-day cycling time. Such changes appear feasible based on the comparison of average Fe deposition at sampling sites during the 2-week period before collection and the average annual Fe deposition at the sites (fig. S2), and the variability would of course be greater if the residence time were 5 months. Fe excursions might raise NCP by inducing transient increases in phytoplankton growth that would eventually be curtailed as grazers respond. Alternatively, recently added iron might be more available to phytoplankton than iron that has resided for a longer time in the mixed layer. A large proportion of Fe in the mixed layer is organically chelated (17, 18), and the bioavailability of this ligand-complexed Fe is poorly understood (19). Similar analyses demonstrate the influence of soluble Fe deposition on GPP as well (fig. S3).

Thus, our data are compatible with either annual iron deposition or synoptic-scale iron deposition that has a significant influence on variability of NCP, as well as GPP, in the Southern Ocean. Statistical tests confirm the link between increasing iron deposition and increasing NCP and GPP (6). Some of the variability in NCP versus Fe deposition can be explained by other sources of Fe (such as meltwater, sedimentary, and upwelling sources), variable phytoplankton Fe:C quotas, light and silicate limitations, parameterization of the atmospheric Fe dissolution kinetics, oceanic transport model errors, and wind parameterization of the piston velocity.

To explore the potential and nature of atmospheric Fe fertilization, we performed a model
II least-squares bisector regression analysis (20) to calculate the Fe/C$_{\text{org}}$ ratio (aerosol Fe input/ NCP) implied by our data (Fig. 3B). We adopted an O$_2$/C molar photosynthetic quotient of 1.4 for NCP (i.e., NCP is assumed to be mostly nitrate-derived) (21). The resulting Fe/C$_{\text{org}}$ ratio for the spring and summer seasons is 2.5 µmol mol$^{-1}$. This number is markedly similar to the oceanic Fe/C ratios in Southern Ocean phytoplankton (22) (1.5 and 2.1 µmol mol$^{-1}$ in the Ross Sea and Drake Passage, respectively). For comparison, Fe/C in laboratory cultures of *Thalassiosira oceanica* varies between 2.5 to 34 µmol mol$^{-1}$ depending on Fe availability (23).

In the Southern Ocean, where Fe is highly limiting, phytoplankton species are at the lower end of this range (24–28). Deriving our estimates for the cellular Fe quota based on NCP is reasonable if, in the mixed layer, Fe is stoichiometrically cycled along with organic carbon, rather than independently exported (28). Stoichiometric cycling is supported by the Fe/C remineralization ratio, which is also about 2 µmol mol$^{-1}$ (22). Hence, our results show that photoautotrophs may rely on aeolian input of Fe over a broad area of the Southern Ocean.

Our work, together with other recent studies, provides a comprehensive picture of the ways in which iron fertilization and iron limitation influence the biomass and fertility of Southern Ocean ecosystems. There are five sources of bioavailable iron to surface waters of the Southern Ocean. First, melting of sea ice can release accumulated iron that contributes locally to springtime blooms along the ice edge (29). Second, the release of dissolved iron or reuspension of sediments can supply iron to waters overlying shallow sea floor, accounting for high productivity in continental shelf environments (along the Antarctic coast, for example) (30). Third, upwelling supplies iron and accounts for elevated productivity in some areas of the APF (31) and along the continental slope. Fourth, vertical mixing, induced by rough bottom topography, supplies iron to surface waters and enhances productivity in regions such as the Scotia Sea east of the Drake Passage, and the Kerguelen Plateau in the center of the Indian Antarctic sector (32). Finally, as we discuss, delivery of soluble iron by aerosol deposition supplies that element to the Southern Ocean, particularly areas downwind of substantial dust sources, accounting for elevated chlorophyll and/or productivity to the east of Patagonia and to the south and southwest of Australia, New Zealand, and Africa. Regions lacking all sources are the least fertile in the Southern Ocean, despite their high burdens of NO$_3^-$, PO$_4^{3-}$, and Si(OH)$_4$. These include waters overlying the Enderby Abyssal Plain (western Indian sector), South Indian Basin (eastern Indian sector), and the Bellingshausen abyssal Plain (Pacific sector), all in the Antarctic Zone of the Southern Ocean.

Both data and models support the idea that the flux of dust to the Southern Ocean was much higher during the last ice age than during the present or preindustrial times (33). In the Subantarctic region, lower δ^{15}N of sedimentary nitrogen in glacial sediments (34), along with more rapid biogenic SiO$_2$ accumulation, indicates higher rates of export production. Increased iron delivery is certainly a plausible explanation for faster export. According to the model of Robinson et al. (34), the resulting depletion of subantarctic waters in nutrients and TCO$_2$ would have led to an atmospheric CO$_2$ drawdown of up to 40 parts per million, accounting for nearly half the glacial lowering of atmospheric CO$_2$. Our work shows that delivery of...
airborne Fe increases production of subantarctic waters, strengthening the link between enhanced Fe delivery and lower CO₂ during the ice ages. Our work also underscores the importance of understanding the implications of the large change in dust transport to the ocean simulated for the coming centuries (33).

References and Notes
6. Materials and methods are available as supporting material on Science Online.
8. We include only springtime and summertime data in our discussion. Although fall data strengthen our conclusions, we omitted these results from our analysis because discussion. Although fall data strengthen our conclusions, we omitted these results from our analysis because we included only springtime and summertime data in our discussion. Therefore, our conclusions are based on the Fan et al. (5) two-step solubility process (μmol m⁻² year⁻¹). (B) Ratio of fluxes shown in (A) and a constant 5% Fe solubility model.

The Evolution of Selfing in Arabidopsis thaliana

Chunlao Tang, Christopher Toomajian, Susan Sherman-Broyles, Vincent Plagnol, Ya-Long Guo, Tina T. Hu, Richard M. Clark, June B. Nasrallah, Detlef Weigel, Magnus Nordborg

Unlike most of its close relatives, Arabidopsis thaliana is capable of self-pollination. In other members of the mustard family, outcrossing is ensured by the complex self-incompatibility (S) locus, which harbors multiple diverged specificity haplotypes that effectively prevent selfing. We investigated the role of the S locus in the evolution of and transition to selfing in A. thaliana. We found that the S locus of A. thaliana harbored considerable diversity, which is an apparent remnant of polymorphism in the outcrossing ancestor. Thus, the fixation of a single inactivated S-locus allele cannot have been a key step in the transition to selfing. An analysis of the genome-wide pattern of linkage disequilibrium suggests that selfing most likely evolved roughly a million years ago or more.

The transition from outcrossing to selfing is a major theme in the evolution of flowering plants, having occurred independently in numerous lineages (1). Although it leads to inbreeding depression, the ability to self can be advantageous when colonizing new territory and is therefore associated with weedy and invasive species. A. thaliana, a member of the Brassicaceae,
Comment on “The Southern Ocean Biological Response to Aeolian Iron Deposition”

Philip W. Boyd* and Douglas Mackie

Cassar et al. (Reports, 24 August 2007, p. 1067) proposed that aerosol-iron input enhances Southern Ocean export production. Their conclusion critically depends upon aerosol-iron modeling simulations not validated with iron-deposition data and dust dissolution rates based on Northern Hemisphere atmospheric chemical conditions (low pH). This diminishes the relevance of their findings and demonstrates that applying such models to this region is premature.

Cassar et al. (1) reported that airborne delivery of iron associated with dust particles increases both primary and export production in Southern Ocean waters, with implications for alteration of atmospheric carbon dioxide concentrations, and hence global climate in both the geological past and the future. The authors used two distinctly different data sources to arrive at this conclusion: a large number of very accurate productivity observations in Southern Ocean waters based on either oxygen/argon samples or the oxygen triple isotope anomaly (whose limitations are identified and scrutinized), and model simulations of aerosol iron deposition (2). Although the productivity data set represents an important advance and valuable resource, we contend that is is mismatched with the aerosol-iron simulations (1, 2).

The Fan et al. model (2) should not be applied to the Southern Ocean for two important reasons. First, the aerosol solubility is based on atmospheric sulfur chemistry (1, 2), but the model parameterization [from (3)] is not described, and unrealistically low pH values (<2) are used to set aerosol dissolution. Such low aerosol pH values are only observed for dust plumes in Northern Hemisphere regions with high levels of atmospheric pollutants (4). Second, the published model predictions of global total input of both dust and soluble iron (2) were not validated with observations but only related to previous global model simulations (5).

In the Cassar et al. study (1), the model output was compared, without statistical analysis, with published aerosol iron dissolution estimates, mainly from the Northern Hemisphere (with only one aerosol sample from south of 45°S). Atmospheric sulfur concentrations, which affect dust dissolution (4), are much higher in the Northern Hemisphere compared with the relatively pristine atmosphere above the Southern Ocean (3). In the supplementary information for (1), Cassar et al. compared predicted dust atmospheric concentrations with observations at three island sites ranging from Tasmania toward the pole, but acknowledged the absence of measurements of aerosol-iron supply to the Southern Ocean.

The conversion of dust deposition fluxes to those of oceanic iron supply currently represents a major challenge for ocean biogeochemists (6). Data are rare on dust deposition into Southern Ocean waters (7), and recent attempts to sample dust in this region revealed major technical issues such as high winds and seas (sea spray) and the need for longer sampling times to overcome the low aerosol deposition rates. Thus, Cassar et al.’s discussion of aeolian-iron deposition to these waters is based on data derived from an unvalidated model, which assumes low aerosol pH conditions for the Southern Hemisphere, and thus has poorly constrained links between the atmospheric sulfur (3) and iron dissolution (2) models.

Even if the described model (1, 2) was applicable to Southern Ocean waters, other important information from the emerging field of iron biogeochemistry was not considered by Cassar et al. (1), which raises questions about the validity of their conclusions. One of their central arguments for the importance of aerosol-iron deposition is the observed south-to-north increase in productivity. Cassar et al. argue that this cannot be driven by upwelled iron, which they suggest would be rapidly removed by scavenging and export. However, their argument ignores well-established trends from both lab culture (8) and field studies that phytoplankton take up high amounts of iron when it is readily available. This high iron uptake [termed “luxury uptake” (8)] ensures that cells remain iron-replete for several divisions and that high productivity can be maintained as phytoplankton are transported northward in this region. Such luxury iron uptake is likely responsible for the exceptional longevity of a polar mesoscale iron-enrichment (9) and may explain the presence of 2000-km-long high chlorophyll plumes downstream of Southern Ocean islands such as South Georgia (10). These examples illustrate how biological responses to iron supply can complicate the identification of the relative importance of different iron supply mechanisms in these waters.

Problems in attributing the geographical influence of different iron supply mechanisms are further illustrated by Cassar et al.’s statement that high productivity is driven solely by dust supply downstream from Patagonia, Australia, New Zealand, and South Africa. The waters off New Zealand are characterized by the subtropical front [higher dissolved iron concentrations than subantarctic waters (7)], shallow shelf regions, and eddy activity, whose interactions, in addition to dust supply, play a key role in setting local productivity. Similar oceanic characteristics are evident east of Patagonia. Furthermore, there is little evidence, from an event-based analysis, of the biological impact of episodic dust storms in the waters south of both Australia and New Zealand (7).

Other recent findings from iron biogeochemistry negate the assumptions of Cassar et al., including those centered on figure 3 in (1). For example, particulate iron has a deeper remineralization length scale than particulate organic carbon or nitrogen in the upper ocean (11, 12). Also, there is both direct (13) and indirect evidence (11) that oceanic microbes can access particulate iron, which suggests that aerosol solubility is only one component of particulate iron dissolution. Multiple time scales for surface mixed-layer iron dissolution have been proposed (12), from hours (physico-chemical mechanisms) to weeks (microbial/photochemical mechanisms). Such longer dissolution time scales, in conjunction with upper ocean physical transports, will also confound the attribution of the geographical extent of different iron supply mechanisms.

Although there is no doubt that dust supply plays an important role in oceanic iron supply (6, 12), the challenge is to determine the relative roles of both atmospheric and oceanic iron supply in the present, the geological past, and the future (14). Currently, there are insufficient data on atmospheric and oceanic iron supply, iron inventories, and the biogeochemical fate of iron. The Southern Ocean study of Cassar et al. (1) highlights many of these gaps in this region. A marked increase in data coverage on the above iron biogeochemical properties will be provided by new programs like GEOTRACES (15), with the subsequent development of more powerful iron biogeochemical models, parameterized and validated specifically for the Southern Ocean.

References

National Institute of Water and Atmospheric Research Centre for Chemical and Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand.

*To whom correspondence should be addressed. E-mail: pboyd@alkali.otago.ac.nz
29 August 2007; accepted 10 December 2007 10.1126/science.1149884
Response to Comment on “The Southern Ocean Biological Response to Aeolian Iron Deposition”

Nicolas Cassar,1* Michael L. Bender,1 Bruce A. Barnett,3 Songmiao Fan,2 Walter J. Moxim,2 Hiram Levy II,2 Bronte Tilbrook3

Net community production in the Southern Ocean is correlated with simulated local dust deposition, and more so with modeled deposition of soluble iron. Model simulations of the latter two properties are consistent with observations in both hemispheres. These results provide strong evidence that aerosol iron deposition is a first-order control on net community production and export production over large areas of the Southern Ocean.

Our report (1) integrated data over large areas of the Southern Ocean and examined the relation between observed net community production (NCP) and simulated values of the rates of both dust deposition and soluble Fe deposition by dust. Dust and soluble Fe fluxes to the sea surface were simulated using a global three-dimensional atmospheric dust transport model (2) that accounts for Fe solubilization in aerosols (3). We observed a strong covariation between NCP and local values of soluble Fe deposition, with Fe/C ratio of 2.5 μmol mol⁻¹, comparable to biological requirements. These results are consistent with aerosol Fe deposition rates exerting a first-order control on NCP.

Boyd and Mackie (4) argue that uncertainties in simulated soluble Fe in aerosols are so large that one cannot use simulated soluble Fe deposition rates to infer a link between this property and NCP. We disagree, but first circumvent the question of the soluble Fe fraction by simply comparing NCP with simulated dust deposition. As one approach, we average individual rates of spring and summer NCP and climatological dust deposition within each zone (i.e., area between fronts) for the Australian, New Zealand, and South American sectors of the Southern Ocean. We observe a strong correlation between NCP and dust deposition (r² = 0.65, n = 15), supporting our earlier conclusion that dust deposition is an important control on NCP in the Southern Ocean. If we assume that 3.5% of dust is Fe, and 5% of that Fe is soluble (5–7), the derived Fe/C of sinking organic matter is 7.5 μmol mol⁻¹, again within the range of observations. Thus, a simple comparison between dust flux and NCP supports the importance of dust fluxes.

When regressing NCP and simulated dust and soluble Fe values averaged for each zone of the entire Southern Ocean, both climatological dust and soluble Fe deposition explain a large proportion of NCP variability (r² = 0.69 and 0.98, respectively).

Although the processes involved in atmospheric Fe dissolution are still not fully understood (8, 9), the increase of Fe solubility with atmospheric transport time is now empirically well established (8, 10). Our model of atmospheric iron solubilization is consistent with Baker and Jickells’ (8) empirical relationship of iron solubility versus dust content derived from North and South Atlantic Ocean measurements (fig. S1). Hence, our conclusions would be similar had we used an empirical relationship and made no assumption about the mechanism of iron solubilization (and aerosol pH) instead of using a prognostic model. Furthermore, observed Fe solubilities vary symmetrically on both sides of the equator and are therefore inconsistent with differing interhemispheric atmospheric Fe chemistry (11).

Contrary to Boyd and Mackie (4), we believe that our model of atmospheric surface coating of aerosols with H₂SO₄, followed by Fe dissolution, is appropriate in both hemispheres (see SOM text). This view is reinforced by the absence of correlation between atmospheric concentration of acid species and iron solubility (12, 13) (i.e., atmospheric acidity is saturating). Support comes from Luo et al. (9), who wrote that “in much of the atmosphere, cloud droplets may be acidic enough to process the iron, and that cloud processing is more important than predictions of acidity distributions.” Certainly, H₂SO₄ from intense local pollution further enhances the acidity of aerosols (14).

Our modeled dust concentrations, dust deposition, and soluble Fe fraction in aerosols and precipitation are consistent with observations in the Southern and Northern Hemisphere (see table S1 and (1–3)]. This consistency validates the Fan et al. (3) model for our purpose: the large-scale statistical comparison between NCP and simulated soluble iron deposition at more than 350 sampling points. The predictions of our dust entrainment and transport model are also consistent with other models (e.g., 15). To our knowledge, there are currently no direct observations of soluble Fe fluxes available for comparison to model predictions, and it seems unlikely that this property will be measured in the foreseeable future.

Boyd and Mackie assert that “there is little evidence, from an event-based analysis, of the biological impact of episodic dust storms in the waters south of both Australia and New Zealand.” We noted (1) that our data alone do not allow one to distinguish whether synoptic (episodic) events or seasonal inputs of dust are responsible for the link between aerosol supply of Fe and NCP. The dominance of wet over dry oceanic deposition of dust (as shown by observations and captured by atmospheric models (3, 16]) complicates the analysis of the biological response to episodic dust events. Episodic CO₂ drawdowns and enhanced biological activity have been hypothesized to be triggered by dust events (17, 18). At the FeCycle site in the Subantarctic Zone southeast of New Zealand, Boyd et al. (19) conclude that the aeolian iron supply is about 50 times as high as the oceanic supply of Fe.

Boyd and Mackie argue that the northward increase in NCP could be driven by “luxury uptake” (i.e., assimilation and storage of a non-limiting nutrient) of Fe south of the Antarctic polar front (APF) and by use of this stored Fe as phytoplankton are advected to the north. Several Fe enrichment experiments, both north and south of the APF, have demonstrated that the high-nutrient low-chlorophyll waters of the Southern Ocean are Fe limited (20). We agree that rapid zonal flows in the Southern Ocean produce chlorophyll plumes far downstream of island Fe sources (e.g., South Georgia). However, these results do not imply long-range northward transport by the slower meridional flows of the Ekman drift. Assuming northward transport of 38 Sv from upwelling around the APF (21) and a 40-m-deep mixed layer, the zonally averaged northward flow is around 4 cm s⁻¹. With a gross carbon specific growth rate of 0.1 d⁻¹, less than 5% of the original phytoplankton population at the APF remains 100 km to the north (e-folding of about 35 km). For comparison, our measurements extend equator-ward of the subtropical front, which sits, on average, more than 1600 km north of the APF (22). In addition, both Fe concentrations (23–25) and Fe sufficiency (26, 27) generally increase at latitudes north of the APF. Hence, Fe in biomass derived from upwelling at the polar front is an unlikely explanation for the northward increase in NCP.

Boyd and Mackie further assert that marine organisms strip additional lithogenic Fe from
TECHNICAL COMMENT

their suggestion that continental shelves are important Fe sources to open ocean waters has merit, deserves further study, and can help account for our observation of high NCP at the northern bound of the Southern Ocean. However, recent evidence suggests that the meridional extent of dust supply downstream of Patagonia, Australia, New Zealand, and South Africa (4).

We agree with Boyd and Mackie that there is a strong need for a better understanding of Fe biogeochemistry in the Southern Ocean through more extensive observations (including soluble fraction in aerosols, aerosol acidity, soluble Fe deposition from snow and rain, and surface ocean measurements) and improved and empirically tested atmospheric transport and oceanic biogeochemistry models. Several studies [cited in (J)] have clearly demonstrated that there are a multitude of Fe sources in the Southern Ocean.

Our study supports aerosol Fe as one important control on NCP over broad reaches of the Southern Ocean.

References and Notes
30. We are grateful to F. Morel (Princeton University) and A. Marchetti (University of Washington) for helpful discussions.

Supporting Online Material
www.sciencemag.org/cgi/content/full/319/5860/159b/DC1
SOM Text
Fig. S1
Table S1
References
1 October 2007; accepted 12 December 2007
10.1126/science.1150011

11 JANUARY 2008 VOL 319 SCIENCE www.sciencemag.org