(Ribulose-1,5-bisphosphate)

Figure 5.7 Structures of substrates and products of reactions catalyzed by Rubisco.

$$(^{18}O/^{16}O)c = \alpha_{c-w} = 1.0286 @ 25 °C$$

 $(^{18}O/^{16}O)w$

Differences in isotopic fractionation between samples are small and delta values are a Convenient way of expressing small differences

$$\delta^{18}O = 1000 * (^{18}O/^{16}O \text{ sample} - 1)$$
 $^{18}O/^{16}O \text{ standard}$

Temp =
$$16.9 - 4.38 (\delta c - \delta w) + (0.1 (\delta c - \delta w)^2$$

Simplified version:

Temp =
$$16.9 - 4.0 (\delta c - \delta w)$$

Redox Reactions are Coupled on a GLOBAL SCALE

Oxygenic Photosynthesis:

 $2H_2O + CO_2$ (CH₂O)_n + O₂

Aerobic Respiration:

 $(CH_2O)_n + O_2$ $2H_2O + CO_2$

Q: Is Photosynthesis and Respiration balanced on a global scale?

THE EVOLUTION OF OXYGEN ON EARTH

UPPER CAMBRIAN

LOWER CAMBRIAN

Without Atmosphere

With Atmosphere

 $T_E = 255 \text{ K } (-18\text{C})$

 $T_{E} = 286 \text{ K}$

∴ "Greenhouse" effect = 31 K

GLOBAL RADIATION BUDGET AT TOP OF THE ATMOSPHERE

CLOUD OPTICAL THICKNESS

$$\delta_{\rm C} = \pi r_{\rm e}^2 Q_{\rm ext} N z_{\rm C}$$

δC is the optical thickness of the cloud
zC is the physical thickness of the cloud
re is the effective radius of the cloud droplets
Qext is the average extinction efficiency ≈ 2.
NC is the concentration (number density) of the cloud droplets

DEPENDENCE OF CLOUD-TOP ALBEDO ON CLOUD THICKNESS AND DROPLET CONCENTRATION

intral curve relates to fairly clean maritime conditions. fects of halving and doubling drop diameter (8-fold crease and reduction in droplet concentration, respectively) shown in the upper and lower curves. From Twomey, mospheric Aerosols, 1977.

EVALUATION OF PERTURBATION IN GLOBAL MEAN CLOUD RADIATIVE FORCING DUE TO ANTHROPOGENIC SULFATE

Quantity	Value	Units	Note
∆ln N	0.15		(1)
F_{Γ}	1370	W m-2	
Amst	0.3		(2)
T	0.76		
RCT	0.3 - 0.7		
$\Delta F_{\rm C}$	-0.7	W m-2	

-) Based on comparison of mass concentrations of non sea-salt sulfate aerosol at remote locations of the Northern and Southern Hemispheres and the assumption that CCN concentration scales linearly with non sea-salt sulfate mass (Schwartz, 1988).
 - Fraction of atmosphere occupied by non overlapped marine stratus and stratocumulus, (Charlson et al., 1987).