111 RODAN: RUTGERS OCEAN DATA ACCESS NETWORK POWERED BY JAVA TECHNOLOGIES

Yunging P. Zhang*, John F. Fracassi, John E. Wiggins, Scott M. Glenn, and J. F. Grassle.
Rutgers University, New Brunswick, New Jersey

1. INTRODUCTION

With the rapid development of remote sensing
and observation technologies, an unprecedented
amount of data have been collected by marine
scientists. Reliable and user-friendly data management
systems with search and display capabilities are in great
demand to maximize the use of these data in answering
critical questions about our ocean environment. In
deference to scientific exchange and collaboration, the
data on these systems should be universally accessible
and the systems should be portable to multiple
hardware and software platforms. Moreover, data
searching, retrieving, analyzing and visualization should
be supported on an intuitive user interface so as to
accelerate the transformation of data into scientific
knowledge and insight.

The Rutgers Ocean Data Access Network
(RODAN) was designed to deliver the aforementioned
functions. RODAN is an open access data management
system currently designed for distributing archived
Long-Term Ecosystem Observatory (LEO-15) data.
LEO-15, located offshore Tuckerton, New Jersey, is
composed of two instrument platforms (nodes) at 15
meter depth and a surrounding network of satellite,
aircraft and shore-based remote sensing systems
(Grassle et al., 1998; Glenn et al., 1999). The major
goal of the Observatory is to obtain oceanic and
meteorological observations at temporal scales for
combining and processing in real-time. While real-time
data play a pivotal role in nowcast and forecast
generation, archived data are equally important in
monitoring long-term environmental change. Research
and educational institutions all over the United States,
often request these archived data sets. How to readily
distribute data to such a diverse user group is the major
issue that RODAN addresses. Traditionally, data have
been copied onto CD-ROMs and then shipped to users.
This approach may be appropriate for transferring very
large quantities of data to experienced users, who are
familiar with the particular data sets and the related
formatting and conversion issues. However, the
majority of the data requests do not fall into this

* Corresponding author address: Yunging P. Zhang,
Rutgers University, Institute of Marine and Coastal
Science, New Brunswick, NJ, 08901; e-mail:
phoebe@imcs.rutgers.edu

category. Indeed, most of the users are only interested
in a small subset of the data and wish to first obtain a
sample in order to assess the value of the data to their
particular research projects. In addition, a considerable
number of data requests are from students and
secondary school educators, who wish to abstract
general concepts from the data, rather than perform
some involved data analysis. An intuitive graphic user
interface will assist those users in extracting the most
out of the data. The ubiquitousness of the World-Wide-
Web makes it the perfect candidate for interfacing with a
geographically separated user group. Recent advances
in Internet technology also allow for seamless
integration of data storage, access, analysis, and
visualization. RODAN is designed and implemented to
take advantage of these technological advances.

Data management and interoperation have
been one of the central concerns in the marine research
community. Many attempts have been made to address
the issue from different angles and the different
approaches have been inspirational to our system
design. However, we choose not to copy any of them
out of a consideration for individual applicability and
forward compatibility. For a while there have been two
distinctive approaches to perform distributed data
management and analysis. One is to design a
networked data system and ask everyone to subscribe
to it. The other is to acknowledge each data provider's
individual need in data management and analysis as
well as its unique presence on the Internet, meanwhile
achieving interoperability by supporting the same data
exchange formats and protocols that have been
mutually agreed upon by the whole community. We are
in favor of the latter approach based on our own
experience in dealing with LEO-15 data and on
communications with other data providers in the field.
Essentially, data analysis and visualization needs are so
diversified that it is hard for any single system, even
superbly designed, to accommodate all the
requirements and afford each data provider a unique
web presence. Equally important, information
technology is evolving at such a phenomenal speed that
a system developed with a certain technology may
become out of date in a matter of several years, while
well-designed protocols and exchange formats will
move at a much slower pace. Furthermore, ingenious
ideas and approaches are more likely to originate in a
heterogeneous environment. Henceforth, it is more
desirable to have each individual data provider decide



what data management system and web page he/she
wants to use and follow certain rules only when new
data are to be engineered out of more than one data
source. Of course, the well-developed networked
systems are also important: they provide a simple
solution for those data providers who are not well
equipped or for whom unique web presence is not a
major concern.

2. A SHORT HISTORY OF RODAN

A pilot project of RODAN was completed in the
summer of 1998 and the first full-fledged version was
put into operation in early 1999. In this version of the
system, we provide the functions of data searching,
analyzing, processing, visualizing and retrieving on a
browser, the complexity of which is managed by a
series of JavaScript programs. The JavaScript programs
help maintain a dynamic human-system interaction by
performing the operations of formatting user requests,
sending them to the web server and opening new
browser windows for presenting the data and plots
returned. This approach ensures a better response time
because the operations are handled locally on the
browser side. User requests are handled by a series of
CGI (Common Gateway Interface) programs that are
implemented in PERL and reside on a Web server
(Netscape Enterprise Server 3.5.1). The CGI programs
decode the requests, dispatch them to the
corresponding analyzing and plotting modules on the
web server (a Sun Ultra 5), formalize the results
outputted from these modules into web-presentable
products, and send the resultant data product back to
the users on the browser side. Each time the web
server receives a user request, the CGI programs
spawn a new process to handle that request. There are
two types of processes that can be invoked. The firstis
a process that executes the data access and processing
programs written in C. The second is a process that
generates a Matlab plotting script, and starts a new
Matlab engine upon which to interpret that script. The
first version of the system, as described above, is
process-oriented. That is, a new process is spawned in
response to each user request.

Since its introduction, the system has been in
continuous operation and provided numerous services
to users from diverse backgrounds. Marine researchers
interested in integrating data into their research projects,
and students and secondary school teachers, who wish
to broaden their knowledge base, use the site. In
particular, our in-house researchers consistently
examine real-time observations using the plots
generated by RODAN as climatological references.
Clearly, the first version of RODAN has achieved its
design goals and delivered reliable data services to a

broader marine research community than just the usual
experiment Pls (principal investigators). Though, with
the rapid increase of users and the growth of archived
data, it became obvious that the system had to be
scaled. However, the CGI protocol, which handles each
request by spawning a new process, poses a
considerable obstacle. When the number of
simultaneous users rises, so does the overhead
associated with process spawning and the demand for
synchronization and interprocess communication. For
instance, let us assume that multiple processes with the
same priority have to run on a single processor. Then,
a multi-tasking operating system would repeatedly
allocate small segments of processor time toward the
partial execution of each process, so as to give the
illusion of simultaneous execution of all processes. In
actuality, the operating system must save the partial
state of execution of each process that has exhausted
its cyclical processor time allocation before loading the
next process' state of execution. The constant save and
load operations are the reason for the time-consuming
overhead associated with a process-driven architecture.
In addition, to ensure that a process does not read from
or write to a file as another process attempts to perform
the same operation, the processes must communicate
with each other and must be synchronized. To resolve
the problem of increased overhead, a thread-driven
architecture may be employed. A thread, otherwise
known as a lightweight process, is one of potentially
many sub-processes that may run concurrently to
perform a task. A thread-driven architecture reduces
overhead by reducing the amount of information
regarding the state of execution of a process that has to
be saved and loaded into memory by sharing sections
of the same memory areas with other lightweight
processes. A new server-side addition to the Java
programming language known as Java servlets has
been recently developed by Sun Microsystems to
replace the old process-driven architecture with the
efficient thread-driven approach. Servlets are programs
that serve as permanent extensions to the functionality
of a web server. When a web server receives a user
request, instead of generating a new process to handle
the request, a servlet running on the web server spawns
a thread to handle it, thereby resolving the problem of
increased overhead. To resolve the problem of
increased demand for synchronization and interprocess
communication, the Java programming language
contains built-in synchronization utilities that facilitate
the development of simpler data-sharing schemes.
Hence, RODAN'’s adoption of the latest release of the
Java platform, Java 2, permits it to effectively resolve all
the problems associated with an increase in its number
of users and the amount of archived data available. In
addition, it also allows for the robust development of a
multi-tier system with Java's RMI (Remote Method
Invocation) technology. Java's RMI packages are a set



of classes (libraries) each comprising of a set of
variables and methods (functions) that permit the
invocation of methods on remote computers from a local
computer. This functionality permits an intermediate
multithreaded application server (servlet) to process and
retrieve data located on a separate server and deliver it
to a web browser thereby completing a three-tier
architecture. The primary advantage of such a system
is that once the servlet-database infrastructure is built,
any number of clients can be easily constructed to
communicate with the database through the servlet
interface. Moreover, Java 2's 2-D and 3-D graphics
capabilities also permit for the development of
sophisticated imaging software. Most important, its
"write once, run anywhere" philosophy promises easy
sharing of codes with our colleagues. In the next section
we will describe in detail RODAN's architecture and the
design of each module.

3. THE DESIGN AND IMPLEMENTATION OF
RODAN

Web Browser Web Server Data Server

Data Access and Anclysis Modug
8 /

User requests

ulti-threaded
ervlet Control |

Data product Dy,

Javascript /JJava Applet Managed Web Interface

Figure 1

Figure 1 illustrates RODAN's basic design and
information flow pattern. RODAN is built in a multi-tiered
framework with physically separated web and data
server. This alleviates the burden on the web server
and ensures scalability for future growth. User requests
are issued on a web browser anywhere around the
world, and are received by the central control program
residing on the web server and implemented in the form
of a Java servlet. The servlet decodes the requests and
forwards them to the appropriate data server. The data
server processes the requests and sends the resultant
data stream back to the servlet via RMI. If the request
is for server-side generated plots, the processed data
are further forwarded to the graphics module, where 2-D
or 3-D plots are rendered and sent back to the central
control servlet. Finally, the central control servlet
delivers the data and graphics product to the user via

the Internet, completing a round of information flow.
Function-wise, the system consists of a user-interface
module, a central control module, a data (access and
analysis) module, and a graphics module. In the
following we will discuss each of them in detail.

3.1 User-interface module

A good user-interface always constitutes a
balanced consideration of functionality and accessibility.
On the one hand, web designers and system engineers
are eager to build highly interactive and resource-
demanding tools into a user interface. On the other
hand, there is a vast disparity in system capacity and
technical sophistication in the end-user sphere. To
maximize both the functionality and accessibility of
RODAN, we choose to support two user interfaces with
various degrees of sophistication.

The first interface is presented as HTML forms,
managed by JavaScript programs. The resulting
program runs smoothly in both Netscape Communicator
and Internet Explorer on common desktop systems,
which represent the source of most requests. The
second one will be a Java Applet-powered user
interface. It will have the extra flexibility of interacting
directly with the data manipulation module without
routing through the central control. The first interface
provides a quicker first look at any data set, but it may
only be used to retrieve static images. The second
interface allows a user to modify the data plot before
generating a final image, but requires more time to load
over a network than the first interface.

3.2 Central Control module

The cardinal component of RODAN is the
central control module, which delegates requests and
responses between the user-interface module, data
module and graphics module. The module is
implemented in the Java Servlet API, a standard Java
extension, which leads to RODAN's platform
independence, scalability and efficiency (API stands for
Application Programming Interface and refers to a
programming library). As the Java servlet APl is
supported by over 30 web servers such as the widely-
used (Netscape) iPlanet Web Server and Apache Web
Server Jserv
(http://java.sun.com/products/servlet/industry.html), a
servlet-based system like RODAN could be easily
adopted by other users who run different web servers
and operating systems than ours. Meanwhile, a servlet
can forward requests to other servers and servlets
(http://java.sun.com/docs/books/tutorial/serviets/overvie
w/index.html) and can also take advantage of RMI.



These technical advantages allow for partition of
services over multiple servers based on task type and
load balance. That is, particular servers may be used to
handle particular types of requests and large tasks may
be assigned to servers with smaller loads (less
processes running). The practice, sometimes referred
to as a multi-tiered approach, essentially makes the
system more scalable for future growth. Using servlets
also enhances system efficiency. Unlike CGI programs
implemented in PERL, which have to be interpreted
each time they are invoked, servlet programs only need
to be compiled once and the resulting bytecodes loaded
once into the web server when it is first started. More
important, the multithreaded approach taken here
reduces response time in two ways. The serviet
program is run in a multithread mode, serving multiple
user requests concurrently. Second, for each user
request, we implement data accessing, plotting, and
transporting in different threads, increasing efficiency in
data sharing. In short, with servlets, our system is more
transferable, scalable, and efficient.

3.3 Data Access and Analysis Module

This module, upon receiving data requests
from the central control, searches the data reservoir for
user-specified data and performs specific data analysis.
The analyses supported include simple time-averaging
and wave analysis. The module, as others, is
implemented in Java 2, and communication with the
central control is handled with RMI.

Implementation in RMI is forward-looking in the
sense that if more than one data provider uses RODAN
or similar systems in the future, analyses could be easily
performed over multiple data sets from diverse sources
and new value-added data could be produced.

Java's security system further ensures the
robustness of accessing data across a network and
therefore validates the use of RMI.

3.4 Graphics Module

The graphics module employed by RODAN is
based on a JAVA software library named VisAD
(Visualization for Algorithm Development)
(http://mww.ssec.wisc.edu/~billh/visad.html). All
extensions to VisAD's functionality in use by RODAN's
graphics module are implemented with the state of the
art JAVA 2D, 3D, Advanced Imaging and Swing APIs.
The Java Advanced Imaging APl is used to generate
and transform images. The Swing API is used to
generate the graphical user interfaces.

VisAD is in use "for interactive and collaborative
visualization and analysis of numerical data"
(http:/lwww.ssec.wisc.edu/~billh/visad.html) in
numerous large-scale academic projects. Itis currently
in use to interactively analyze meteorology model output
in the JMET Meteorology System
(http:/lwww.ssec.wisc.edu/pub/outgoing/jmet), to
visualize cyclic temporal phenomena and collaborate
over the internet in the Collaborative Geographic
Visualization project at Penn State
(http:/www.GeoVISTA. . psu.edu/collaborative.html), and
in automated land mine detection at the Swiss Federal
Institute (http://dmawww.epfl.ch/~roehrl/mines.html).

There are multiple reasons for the choice of
VisAD as RODAN's underlying graphics library. First
and foremost, VisAD is written in JAVA and hence
preserves RODAN's JAVA based features of platform
independence, developer extensibility and multi-
threaded and distributed object computing. That is, the
graphics module may be ported to any platform, and its
functionality easily extended for specific uses, in a
computationally efficient programming environment.
Second, VisAD has a mathematical data model that is
capable of accommodating an extremely wide variety of
numerical data. Third, VisAD supports transparent
access to data, independent of whether the data are
stored in a netCDF, HDF-5, FITS, HDF-EOS, McIDAS,
Vis5D, GIF or JPEG file or as a JAVA serialized object.
So data in these formats may be directly used with built-
in VisAD methods. Fourth, VisAD is capable of
generating interactive 2-D and 3-D displays with multiple
data views. RODAN's graphics module uses Java 2D,
3D and Advanced Imaging to further extend VisAD's 2-D
and 3-D capabilities with geometric transformation
algorithms that permit image translation, rotation and
scaling. The images may also be cropped, filtered or
interpolated. Fifth, VisAD has several built-in interactive
GUI objects to enhance data analysis and visualization.
Again, RODAN extends VisAD's functionality in this area
with intuitive Swing-based GUIs. The sixth and final
reason is that, VisAD is a free software package, just as
the rest of the JAVA 2 APIs in use by RODAN's
graphics module, thus making the module freely
distributable.

The RODAN graphics module has three simple
implementations, two as standalone applications and
the other as an applet. A standalone application is the
familiar type of program that someone executes on his
or her local computer. An applet is a program stored on
a Web server that is loaded and executed on a Web
browser within the context of a Web page. The
difference between the applet and the application
versions of the graphics module is that the applet does
not support 3-D rendering.



The HTML and JavaScript based web interface
makes use of an application implementation. All
requests made using this interface are for static images
that are generated on the server by the graphics
application and delivered via the servlet to the client.
Hence, this application implementation is used when a
user wants to quickly visualize a data set. As this
implementation interacts solely with the servlet, it does
not have a GUI (graphical user interface).

The applet-powered interface allows the user
to tailor the data plots to his/her needs. Itis used when
a user needs to analyze the data and interact with the
data plots.

Since applets are inherently slower to load
over a web browser, a user may install the second
application implementation of the graphics module on
their computer. This application provides a GUI
(graphical user interface) that may be used to generate
and interact with data plots. Once a user retrieves the
data from RODAN, they may invoke the graphics
module locally and not suffer the delays associated with
slower applet load time. Whatever option the user
chooses, they will be able to generate 2-D spatial and
time-series plots in the applet implementation, with the
extra functionality of 3-D volume renderings in the
application implementation.

4. CONCLUSION

RODAN is a web-interfaced data management
and analysis system with a multithreaded, multi-tiered
architecture, powered by advanced Java 2 technology.
It supports universal access to data searching,
retrieving, analyzing, and plotting in one web-based
user interface. It has provided valuable services to
researchers in marine and coastal sciences.

RODAN, as stands at this moment, is an
integrated system for data management, analysis,
visualization and retrieval. Besides satisfying institute-
wide data management needs, the design and
implementation would serve as a reference for other
data providers who are considering similar systems.
Meanwhile, the distributed architecture adapted for
RODAN makes it well-positioned to embrace new
technology development and community-wide protocols
and standards.

5. REFERENCES

Grassle, J.F., Glenn S.M. and C. von Alt, 1998: Ocean
observing systems for marine habitats. OCC '98
Proceedings, Marine Technology Society, November,
567-570.

Glenn, S.M., W. Boicourt, B. P. and T.D. Dickey, 1999:
Operational observation networks for ports, a large
estuary and an open shelf. Oceanography, 13, No,
12-23.



