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11 [1] As part of the 2001 Hyper Spectral Coupled Ocean Dynamics Experiment, sea surface
12 temperature and ocean color satellite imagery were collected for the continental shelf of
13 the Mid-Atlantic Bight. This imagery was used to develop a water mass analysis and
14 classification scheme that objectively describes the locations of water masses and their
15 boundary conditions. This technique combines multivariate cluster analysis with a newly
16 developed genetic expression algorithm to objectively determine the number of water
17 types in the region on the basis of ocean color and sea surface temperature measurements.
18 Then, through boundary analysis of the water types identified, the boundaries of the major
19 water types were mapped and the differences between them were quantified using
20 predictor space distances. Results suggest that this approach can track the development
21 and transport of water masses. Because the analysis combines the information of multiple
22 predictors to describe water masses, it is an effective tool in detecting water masses not
23 readily recognizable with temperature or chlorophyll alone. INDEX TERMS: 4283
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31 1. Introduction

32 [2] Water mass analysis is an active area of research
33 because of their potential utility for describing large-scale
34 ocean circulation [Warren, 1983], assessing the impact of
35 river plumes [Højerslev et al., 1996], understanding basin-
36 scale biogeochemistry [Broecker and Takahashi, 1985].
37 Water masses are classically defined as waters with com-
38 mon formation and origin having similar conservative
39 properties such as temperature and salinity. However, it
40 should be noted that this conservative requirement means
41 that for temperature and salinity to remain conservative
42 within a mass of water, the water mass cannot be in contact
43 with the surface ocean or its source region. The introduction
44 of the T-S diagram was the first quantitative approach to
45 defining water masses on the basis of their conservative
46 properties and has been a mainstay in the oceanographic
47 community [Helland-Hansen, 1916]. Since that time, oce-
48 anographers have used chemical isotopes to further study

49the circulation of water masses in the ocean interior
50[Broecker and Peng, 1982]. In the surface ocean where
51temperature and salinity are not considered conservative,
52injections of dyes and SF6 have been successfully used to
53track the circulation and subduction of surface features
54because the presence of SF6 can be considered conservative
55compared to some of the short-timescale process in the
56surface ocean [Upstill-Goddard et al., 1991]; however, this
57type of research is costly and can effectively cover only
58relatively small space scales. To assess the impact of broad-
59scale surface features, the key is to develop proxies that
60change over larger timescales than the processes being
61studied.
62[3] To a certain degree, optical oceanographers have
63addressed the issues of water mass identification in the
64surface ocean by classifying them on the basis of their
65optical properties. Efforts by Jerlov [1968] classified waters
66into nine water types. These water types were further
67analyzed by Morel and Prieur [1977] and classified into
68the widely accepted Case 1 and Case 2 waters. These
69classifications have been an extremely useful tool. Water
70types are different than water masses in that water types
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71 occupy only similar predictor space while water masses
72 occupy similar predictor and physical space [Tomczak,
73 1999]. A major objective over the last few decades has
74 focused on understanding global and basin-scale circulation,
75 which operate over timescales of years to thousands of
76 years. Therefore these processes require tracers that are
77 relatively conservative over the same timescales (i.e., salin-
78 ity). However, if the timescale of interest in detecting and
79 tracking near surface water masses is on the order of hours
80 to days as it often is in coastal regions, optical predictors
81 potentially provide additional dimensions of discrimination
82 to traditional temperature and salinity analysis. This type of
83 optical approach has been demonstrated by tracking river
84 influence containing anthropogenic pollutants [Højerslev et
85 al., 1996]. In addition to tracking anthropogenic pollutants,
86 the identification of frontal regions between water masses
87 has been used to identify important areas of mixing and
88 biological activity [Claustre et al., 1994].
89 [4] Although simple in concept, the inclusion of optics as
90 a water mass tag presents a problem in determining the
91 uniqueness of a water mass. Because water mass classifi-
92 cation has traditionally relied upon hydrographic predictors
93 only, there exists an intuitive sense, based on a century of
94 experience, for defining significant differences in tempera-
95 ture and salinity predictors before discriminating between
96 water masses. While these discriminations are inherently
97 subjective, the inclusion of optical predictors only con-
98 founds the already subjective interpretation. This problem
99 is not unique to oceanography, but a fundamental problem
100 for any scientific field that assigns categories or identifiers
101 to a known data continuum. Therefore, if optical predictors
102 are to be used effectively in water mass analysis and
103 identification, an objective mathematical construct is needed
104 for proper quantitative discrimination of water masses based
105 on the similarity of water types [Martin-Trayovski and
106 Sosik, 2003].
107 [5] One branch of science that has had to develop means
108 to overcome the problems associated with assigning catego-
109 ries to a known continuum is the field of evolutionary and
110 molecular biology. These problems manifest themselves in a
111 variety of ways such as uncertainties in phylogenetic trees,
112 species determination [Hey, 2001; Wu, 2001; Noor, 2002],
113 annotations of genomes [Meeks et al., 2001] and the expres-
114 sion of genes [Yeung et al., 2001]. This problem has become
115 more complex with technological breakthroughs such as
116 DNA microarrays and automatic sequencers, and through
117 necessity, the rapidly advancing field of bioinformatics has
118 endeavored to produce several objective mathematical con-
119 structs to transform a data continuum into meaningful
120 categories. This manuscript applies techniques developed
121 by the bioinformatics field and adapts them for the use of
122 objective water mass analysis and classification in a coastal
123 region. We present a mathematical construct of a water mass
124 classification method and apply it to the Mid-Atlantic Bight
125 during the summer of 2001 using optical parameters mea-
126 sured by SeaWiFS and sea surface temperature measured by
127 AVHRR satellite sensors.

128 2. Methods

129 [6] During the 2001 HyCODE experiment at the Long-
130 term Ecosystem Observatory (LEO) off southern New

131Jersey, daily SeaWiFS and AVHRR passes were collected
132with an L band data acquisition system at approximately
1331 km resolution over an area defined at 38.50�–41.50�N
134latitude and 76.00�–71.00�W longitude (Figure 1). These
135satellites were used as an adaptive sampling tool during the
136experiment so that data of the relevant hydrographic fea-
137tures in the region could be collected. Pixels from the single
138daily SeaWiFS pass were matched to the least cloud
139covered AVHRR pass using latitude and longitude. Morning
140AVHRR passes were used to avoid the effects of diurnal
141solar heating. Cloud removal was accomplished by adjust-
142ing the cloud coefficient in the MCSST algorithm. SeaWiFS
143data were processed using the DAAC algorithm. For this
144study, matched satellite passes from 14, 21, and 31 July and
1452 August 2001 were chosen because of relatively little cloud
146cover. Each composite matrix of SeaWiFS and AVHRR
147imagery had between 75,000 and 105,000 cloud free pixels.
148Each composite matrix was subsampled at 6 km resolution
149for the analysis to increase computational speed, and to
150match the resolution of the surface current measurements in
151the region. These data were analyzed in a multistep process
152that identifies predominant water mass boundaries and the
153gradients between water masses (Figure 2).

1542.1. Data and Standardization

155[7] The data used from the composite matrix of AVHRR
156and SeaWiFS in this study were sea surface temperature
157(SST, �C), remote sensing reflectance measured at 490 nm
158(Rrs(490)) and at 555 nm (Rrs(555)) (Figure 1). Remote
159sensing reflectance is a quasi-inherent optical property
160defined as the ratio of upwelling radiance (W m�2 sr�1)
161to downwelling irradiance (W m�2) and has units of sr�1.
162These data were chosen for two reasons. First, they are used
163in chlorophyll and primary productivity estimations. Sec-
164ond, a principal components analysis using the correlation
165matrix on the combined 4-day data set including SST and
166remote sensing reflectance at 412 nm, 443 nm, 490 nm,
167510 nm, 555 nm and 670 nm indicated that three linear
168combinations described 96.6% of the variance of the data.
169SST, Rrs(490) and Rrs(555) were the largest contributors to
170these linear combinations. This suggests that the majority of
171the waters in this analysis are Case 1 and that the other
172remote sensing reflecting channels are highly correlated and
173would not add much discrimination power. Note however,
174the methods described in this paper are not limited to three
175predictors or these specific satellite products; however in
176this region they represented the most useful data. Work in
177other areas may require some similar preliminary analysis.
178SST, Rrs(490) and Rrs(555) were standardized for this analysis
179by subtracting their respective means and dividing by their
180respective standard deviations from the combined data from
181the 4 days. This process weighted each predictor equally for
182any potential water mass present.

1832.2. Clustering Algorithms

184[8] Four different clustering algorithms were used simul-
185taneously in this analysis (Table 1). These algorithms were
186two agglomerative or hierarchical clustering algorithms, a K
187means and a fuzzy C means algorithm (see Quackenbush
188[2001] for a review). From the subsampled data set, each
189pixel (observation) was projected into three dimensional
190standardized predictor space. The agglomerative clustering
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191 algorithms grouped observations in three dimensions
192 according to their Euclidian distance in standardized pre-
193 dictor space. The agglomerative clustering types grouped
194 standardized predictor data hierarchically from n to 2
195 clusters from closest to furthest in predictor space where n
196 is the number of observations. The difference between how
197 the two agglomerative clustering algorithms treated the data
198 is based on how the data was grouped in predictor space.
199 The first agglomerative clustering type grouped data accord-
200 ing to complete linkage (i.e., agglomerative complete link-
201 age (ACL)), which determined that two clusters of data
202 ought to be joined to a single cluster based on the maximum
203 distance between cluster edges. The second agglomerative
204 method grouped data according to Ward’s linkage (i.e.,
205 agglomerative Ward’s linkage (AWL)) [Ward, 1963]. This
206 method calculated the total sum of squared deviations from
207 the cluster means, and joins clusters to minimize the
208 increase of the total sum of squares deviation. The K means
209 clustering algorithm is a divisive clustering algorithm,
210 which requires a user-specified cluster number. This algo-
211 rithm initialized cluster centers randomly and grouped data
212 until the within-cluster sum of squares is minimized for the
213 number of clusters specified [Hartigan and Wong, 1979].
214 The fuzzy C means clustering algorithm is similar to the K
215 means clustering algorithm except that through the use of

216fuzzy logic and sequential competitive learning, observa-
217tions are clustered [Chung and Lee, 1994].
218[9] While there are dozens of clustering schemes, these
219particular algorithms were chosen on the basis of perform-
220ance from the literature. Yeung et al. [2001] observed that
221on real data, using agglomerative clustering with single
222linkage (clusters joined into a single cluster based on the
223minimum distance between clusters) did not produce sen-
224sible clusters of data. Rather, the K means clustering
225algorithm performed very well. The ACL algorithm has
226been cited as very useful in producing tightly grouped
227clusters [Quackenbush, 2001]. In our opinion this is a good
228feature for water type identification because there is an
229emphasis in grouping only the most similar data. The choice
230of the AWL algorithm was related to previous work done by
231Oliver et al. [2004], in which a priori knowledge of the
232number of water masses present fit well with the results of
233the AWL algorithm. The fuzzy C means clustering algorithm
234was chosen on the basis of the results of Chung and Lee
235[1994], which showed that the competitive learning done by
236the fuzzy C means algorithm produced sensible clusters.

2372.3. Figure of Merit

238[10] A major difficulty in cluster analysis is determining
239how many clusters (or water types in this case) should be

Figure 1. Temperature and reflectance maps on 14, 21, and 31 July and 2 August 2002 in this analysis.
A warm-core ring is evident on 2 August as a nearshore optically dominated water mass formed
nearshore. The white line is the coastline, and the black indicates land or cloud.

C07S04 OLIVER ET AL.: WATER MASS DETECTION

3 of 12

C07S04



240used to describe a data set as each observation could
241theoretically represent its own cluster. Therefore a means
242to analyze this structure objectively was required to identify
243water types in predictor space. With the advent of rapid
244gene sequencing and gene expression chips, the field of
245bioinformatics has endeavored to produce and continues to
246refine several algorithms that analyze gene and expression
247data in order to find patterns of gene expression that are
248linked to a variety of factors. Yeung et al. [2001] developed
249and validated one such method which essentially computes
250the RMS deviation between individual observations and the
251mean of the cluster they belong too for a given algorithm.
252This statistic is called the figure of merit (FOM). Although
253this algorithm was designed to calculate the difference
254between expression vectors of genes, here it is used to
255analyze the inherent structure of clusters in predictor space
256detected by the clustering algorithms. In this case, ‘‘gene’’
257expression vectors were standardized values of SST, Rrs(490)

258and Rrs(555) at each pixel. The FOM statistic was used to
259analyze the inherent structure defined by the clustering
260algorithms. The equation used in this study to calculate
261the FOM was:

FOM c; kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X3
i¼1

Xk
j¼2

Xmj

l¼1

�aij � aijl
� �2vuut ð1Þ

263where c is one of the four clustering algorithms, n is the
264total number of observations, i = 1–3 indexes the three
265variables measured at each pixel, j is the cluster number, k is
266the number of clusters each data set was divided into, l is a
267specific observation of the total number of pixels m in
268cluster j, aijl is the specific standardized observation of
269predictor i in cluster j, and �aij is the mean for each cluster.
270This function is essentially a measure of the variation within
271clusters as a function of cluster number.
272[11] Ideally, the FOM function will exhibit a distinct
273‘‘elbow’’, decreasing rapidly at small k and much more
274slowly beyond a threshold k. This elbow represents the ideal
275cluster number (or number of water types in this case) for a
276data set because the deviation between cluster means and
277the individual observations in each cluster become very
278small. While the FOM statistic often show very distinct

Figure 2. Flow diagram of this analysis. This analysis
assimilates sea surface temperature as well as two remote
sensing channels for all 4 days. The data are standardized
according to the mean and variance of the combined 4-day
data set to make them comparable. Water types for each day
are detected using four clustering algorithms, ACL, AWL,
K means, and C means. These results are combined into a
Figure of Merit, where an average slope function (ASF) and
threshold of acceptable flatness (TAF) are computed. These
two predictors give a range of reasonable water types. For
each solution for each day the boundaries are plotted, and
coincident boundaries are the most prevalent, indicating
similar structures found by different clustering algorithms.
This indicates that the boundaries associated with this water
type indicate a prevalent water mass. Finally, the predictor
space distance is measured between each data point to
determine how different the water is on either side of each
boundary. High values indicate a very strong boundary
between water masses.

t1.1 Table 1. Description of the Four Types of Clustering Algorithms Used

Clustering Algorithm Descriptiont1.2

Agglomerative Complete
Linkage (ACL)

Data are hierarchically grouped from n to 2 clusters. Data
are grouped from closest to farthest on the basis of
Euclidian distance in predictor space. The distance
between clusters is measured on the basis of the
maximum distance between cluster edges in predictor
space.t1.3

Agglomerative Ward’s
Linkage (AWL)

Data are hierarchically grouped from n to 2 clusters. Data
are grouped at each step to minimize the variance of the
clusters.t1.4

K means Data are divided from 1 to k clusters, where k is the number
of clusters requested by the user. To form k clusters, k
cluster centers are randomly initialized in predictor
space. Data are then assimilated into cluster centers as
to minimize the within cluster sum of squares.t1.5

Fuzzy C means Similar to K means, except this algorithm
clusters initial cluster centroids through competitive learning.t1.6
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279 ‘‘elbows’’ in simulated data sets, real data sets tend to show
280 no distinct elbow for any of the clustering algorithms
281 (Figure 3) [also see Yeung et al., 2001, Figures 1 and 3].
282 In cases using real data, the FOM is best approximated by a
283 power function of the number of clusters indicating that it is
284 difficult to choose the ideal number of clusters. In this study,
285 a threshold of acceptable flatness (TAF) of the FOM was
286 defined by calculating the normalized average slope func-
287 tion (ASF(k)) of the FOM function at each cluster k for the
288 four clustering algorithms using:

ASF kð Þ ¼ 1

4

X4
c¼1

FOM c; k þ 1ð Þ � FOM c; kð Þ
FOMmax cð Þ ð2Þ

290 where FOMmax (c) is the maximum FOM value for a specific
291 cluster algorithm c. The TAF was defined at the smallest
292 cluster k where ASF(k) < 0.01 (<1% decrease in FOM
293 relative to the maximum FOM) for three or more consecutive
294 clusters. On the basis of our own observations in which k
295 was allowed to approach n, an ASF(k) value < 0.01 indicates
296 that the variance within each cluster no longer reduces
297 appreciably with increasing cluster number. This established
298 an upper bound for what we believed to be reasonable cluster
299 numbers or water type assignments by the suite of clustering

300algorithms. For this study, k was limited to a maximum of
30130 clusters, as the FOM value did not change significantly
302after this cluster number.

3032.4. Boundary Analysis

304[12] One major difference between the clustering of a
305gene data set and a water mass data set is that clusters
306defined in a water mass data set occupy predictor space
307represented by standardized SST, Rrs(490) and Rrs(555) and
308physical space represented by latitude and longitude while
309a gene data set has no physical space representation.
310Water mass definitions vary slightly, so for the purposes
311of this analysis, our definition of a water mass is that it
312must occupy physical space, and water with similar
313properties in separate physical spaces represent different
314water masses. The spatial attributes of water masses
315provide additional useful information not generally asso-
316ciated with genes, and provide a useful means in delin-
317eating the physical boundaries between waters that have
318similar properties identified by the cluster analysis. The
319mapping of defined water types for any cluster number k
320and clustering algorithm c into physical space (this case
321in dimensions of latitude and longitude) defines physical
322boundaries between similar water types. Because each of
323the clustering algorithms is slightly different, the bound-

Figure 3. Figure of merit (FOM), average slope function (ASF) and threshold of acceptable flatness
(TAF) calculation for each of the 4 days with the results of each of the clustering algorithms. A large
FOM indicates that the variance within each cluster is comparatively large and that the cluster centroid is
a generally poor predictor of the other data points within each cluster. A small FOM indicates that the
cluster centroid better predicts the other members of its cluster and that the variance within the cluster is
comparatively small. ASF is the average percent change of the four clustering algorithms compared to the
maximum FOM. TAF was defined when the average change in the FOM was less than 1% for more than
three clusters.

C07S04 OLIVER ET AL.: WATER MASS DETECTION

5 of 12

C07S04



324 aries described at any specific cluster number k between
325 water types may be different. However, it was clear that
326 different clustering algorithms often had similar boundary
327 solutions at different cluster numbers. This is because
328 different water types were differentiated at slightly different
329 cluster numbers because of differences in the clustering
330 algorithms. Because of this a physical space representation
331 of the clusters was used to determine which boundaries
332 occurred most often by constructing a 2-D histogram for
333 boundaries at 2 � k � TAF. To detect the most common
334 water mass boundaries for any cluster number, the cluster
335 number gradient in latitude and longitude space was com-
336 puted using:

rCxykc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cxykc � CxþDx; ykc

Dx

� 	2

þ Cxykc � CyþDy; xkc

Dy

� 	2
s

ð3Þ

338 where x is longitude, y is latitude, Cxykc is the cluster number
339 assignment for k clusters for c clustering algorithm and
340 rCxykc is the magnitude of the cluster number gradient
341 vector. Where rC was nonzero, it was replaced with a
342 logical value of 1 to indicate the presence of a boundary
343 using:

bxykc ¼
1 if rCxykc 6¼ 0

0 if rCxykc ¼ 0:

8<
: ð4Þ

345 where bxyck is the logical boundary value for a given
346 longitude and latitude for the given cluster algorithm for k
347 clusters. Although it is nonsensical to calculate gradients of
348 categorical data, this method effectively detects the
349 boundaries of the water masses. A 2-D histogram was
350 constructed of high-frequency boundaries for each of the
351 4 days using:

Bxy ¼

P4
c¼1

PTAF
k¼2

bxyck

4 TAF � 1ð Þ 	 100% ð5Þ

353 where Bxy is the frequency that a boundary (0–100%) at a
354 given longitude and latitude. This 2-D histogram describes
355 the most common physical boundaries between similar
356 water types defined by the clustering algorithms. The
357 presence of a high-frequency boundary was interpreted as a
358 boundary between separate water masses.

359 2.5. Gradient Analysis

360 [13] In addition to determining where the major water
361 mass boundaries are, the relative strengths of these
362 boundaries were also estimated. Theoretically, water types
363 could be distinctly separated in predictor space, but still
364 be relatively close to each other in predictor space. In this
365 case a boundary on a physical map between these water
366 types would be drawn frequently between these distinct
367 water types, while their differences would still be rela-
368 tively minor. The purpose of the gradient analysis was to
369 determine how different water types were in predictor

370space in relation to geographic space. The relative
371strength of the boundaries was defined as:

Dx!xþDx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SST 0

x � SSTxþDx
0� �2þ R0

rs 490ð Þx � R0
rs 490ð ÞxþDx

� �2

þ R0
rs 555ð Þx � R0

rs 555ð ÞxþDx

� �2
r

Dy!yþDy

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SST 0

y � SSTyþDy
0

� �2

þ R0
rs 490ð Þy � R0

rs 490ð ÞyþDy

� �2

þ R0
rs 555ð Þy � R0

rs 555ð ÞyþDy

� �2
r

rG x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx!xþDx

Dx

� 	2

þ Dy!yþDy

Dy

� 	2
s

ð8Þ

377where SST0 is standardized sea surface temperature, Rrs(490)
0

378is standardized Rrs(490), Rrs(555)
0 is standardized Rrs(555),

379Dx!x+Dx is the standardized predictor space distance
380between x and x + Dx, Dy!y+Dy is the standardized
381predictor space distance between y and y + Dy, and
382rG(x, y) gradient in predictor space with respect to x and y.
383While the boundary analysis determines likely locations of
384water mass boundaries, rG(x, y) describes the strength of
385boundaries through simultaneous analysis of SST, Rrs(490),
386and Rrs(555).

3872.6. Current Structure of the Region

388[14] Surface current maps, measured by an HF radar
389system, provide a dynamical context in which to evaluate
390the placement of water mass boundaries. The long-range
391HF radar system used here was first deployed in 2001
392[Kohut and Glenn, 2003], and consists of four remote
393transmit/receive sites along the coast of New Jersey and a
394central processing site in New Brunswick, New Jersey.
395Using the scatter of radio waves off the ocean surface
396each remote site can measure the surface current compo-
397nent moving toward or away from the site [Barrick et al.,
3981977]. Information from all four remote sites is then
399geometrically combined at the central site to provide a
400total vector current map. The systems are operating at a
401frequency of about 5 MHz, which provides range out to
402200 km offshore, a total vector grid resolution of 6 km
403and a surface current averaged over the upper 2.5 m of
404the water column. Each current map is a three hour
405average. For this analysis, the 3-hour data were averaged
406for 21 and 31 July and 2 August. Current data for 14 July
407were not yet available. If a particular range cell did not
408have at least 60% coverage over each day, the current
409vector in that range cell was not used in the analysis. A
410simple drifter experiment, which modeled 48 drifters
411along a boundary on 31 July, was used to determine if
412local advective processes could explain the changes in the
413boundary location during these days. This exercise
414attempts to predict the frontal location 51 hours later on
4152 August. The current field was interpolated to the
416position of each drifter. The three hour average current
417maps were assimilated sequentially. At hourly intervals,
418the location of the drifter was evaluated and a new vector

ð7Þ

ð6Þ
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419 was assigned to the drifter. At three hour intervals a new
420 current map was assimilated.

422 3. Results

423 [15] This study focused on a series of four composite
424 images of SST, Rrs(490) and Rrs(555) from 14 July to 2 August
425 2001. During this period, a phytoplankton bloom developed
426 in the northern portion of the study site and dispersed
427 alongshore to the south (M. A. Moline et al., Episodic
428 forcing and the structure of phytoplankton communities in
429 the coastal waters of New Jersey, submitted to Journal of
430 Geophysical Research, 2003, hereinafter referred to as
431 Moline et al., submitted manuscript, 2003). Offshore, part
432 of a Gulf Stream warm-core ring was observed on August 2
433 as it propagated from east to west (Figure 1). The phyto-
434 plankton bloom may have been associated by terrestrial
435 runoff and was sustained by several upwelling events.
436 Outflow from the Hudson River, one of the largest sources
437 of terrestrial runoff in this region, measured at the Water-
438 ford, New York, site prior to the satellite passes was up to a
439 factor of 2 larger than the 25 year mean during that time
440 period (Figure 4). Yankovski and Garvine [1998] have
441 shown that the time lag of these outflows to reach the study
442 area is approximately 40 days, which coincides with the
443 time with a large outflow from the Hudson River of this
444 study (approximately 4 June). In addition, this time period
445 had several upwelling favorable wind patterns on or around
446 19, 26, and 30 July. These upwelling wind events are
447 regular in this region and stimulate phytoplankton growth
448 [Schofield et al., 2002; Moline et al., submitted manuscript,
449 2003].

450 3.1. Evaluation of the Figure of Merit

451 [16] For each of the days, FOM was calculated from k = 2
452 to 30 clusters for the four clustering methods (Figure 3).

453These FOM functions were generally decreasing with
454increasing cluster number in all cases and were similar to
455those found by Yeung et al. [2001] in that no distinct
456‘‘elbow’’ was obvious. In all FOM cases, the ACL cluster-
457ing algorithm was slightly higher than the other three
458clustering algorithms. While not producing exactly the same
459FOM statistic, the AWL, K means and C means clustering
460algorithms were very similar within days. FOM curves
461between days were similar in shape, however they differed
462slightly in magnitude. The ASF(k) function for these days
463showed the most rapid decrease occurred where k < 10. In
464addition, all of the ASF(k) functions display erratic changes
465in value where 10 < k < 15. For k > 15, the ASF(k) functions
466in all 4 days flattened noticeably. The TAF value for 14, 21,
467and 31 July and 2 August were 19, 20, 24, and 20 clusters,
468respectively. These values served as the upper bound for the
469boundary analysis.

4703.2. Location and Strengths of Common Water Mass
471Boundaries

472[17] The FOM analysis of the water types defined by the
473four clustering algorithms indicated that the ‘‘ideal’’ number
474of water types (clusters) was in the range of 2 � k � TAF.
475For each c and k, k water types were defined that had
476boundaries described by equations (3) and (4) in physical
477space. Equation (5) is the frequency of these boundary
478observations across all c and k. A boundary frequency
479map (Bxy) was computed for each of the 4 days (Figure 5).
480In general, water mass boundaries become more defined
481from 14 July to 2 August. The most frequent boundaries are
482associated with strong optical or temperature fronts. Figure 6
483illustrates the boundary frequency differences between the
4844 days. As a function of total boundaries drawn on a map,
485high-frequency boundaries (Bxy > 60%) were more spatially
486common on 31 July and 2 August compared to 14 and
48721 July. Also, low-frequency boundaries (0% < Bxy < 20%)
488are more common on 31 July and 2 August compared to 14
489and 21 July. These two conditions cause the 31 July and
4902 August Bxy maps to appear more cleanly defined. In
491contrast, medium-frequency boundaries (20% < Bxy <
49260%) were more common on 14 and 21 July compared to
49331 July and 2 August, causing the 14 and 21 July maps to
494appear more cluttered. On 21 and 31 July and 2 August,
495when boundaries are more distinct, the major water masses
496are associated with the nearshore plume, shelf water, and
497water east of the shelf break front and the warm-core ring.
498[18] The objective of the cluster analysis was to describe
499the inherent structure and separation of water types in
500predictor space, which was then mapped in the form of
501boundaries in Figure 5. The purpose of the gradient analysis
502was to determine how different water types were in predic-
503tor space in relation to geographic space. Figure 7 is the
504application of equations (6), (7), and (8) to evaluate the
505relative strengths of the boundaries between water masses.
506Because each pixel is slightly different from its neighbors,
507the gradient is never zero. The median value for this
508gradient calculation for this study is approximately 10, with
509a standard deviation of about 10. Therefore a strong
510gradient has a value in excess of 20 for this study. On 14
511and 21 July gradients between water masses defined in the
512boundary analysis are relatively weak indicating that the
513water types found in these days are fairly similar. In

Figure 4. Wind record from the RUMFS field station and
Hudson River flow recorded at Waterford, New York,
during the study time period. From 14 July to 2 August
there were three upwelling favorable events that may have
sustained phytoplankton growth nearshore. The elevated
streamflow during this particular year recorded at Water-
ford, New York, may have initiated the formation of a
Hudson River-derived water mass during the 4-day study
period. It has been reported that water outflow from this
area takes 40 days to reach the Southern New Jersey shore
[Yankovski and Garvine, 1998].
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514 contrast, strong gradients were found associated with the
515 nearshore optical front. These relatively strong gradients are
516 coincident with the high-frequency boundaries described in
517 Figure 5 indicating that these particular water types are
518 structurally distinct and very different. In addition, strong
519 gradients were detected near clouds which may be a result
520 of inadequate cloud masking.

521 3.3. Surface Current Structure, Gradient Strengths,
522 and Boundary Locations

523 [19] The seasonal mean flow in the summer time in this
524 region is along shore toward the south [Kohut and Glenn,
525 2003], which was generally observed in the 3-hour average
526 flow on 21 and 31 July and 2 August. However, the flow
527 structure on these dates was highly variable. The current
528 fields in Figure 8 represent the flow field at the time of the
529 satellite over pass with the spatial mean subtracted from it.
530 This was done to visually enhance the fine-scale current
531 structure associated with the water mass boundary gra-
532 dients. Generally speaking, gradients were associated with
533 physical features in the flow fields such as horizontal sheer,
534 indicating that these features were strongly influenced by
535 advective processes. However, the strength of the gradient
536 was not related to the strength of the horizontal sheer, nor
537 were all horizontal sheers associated with gradients.
538 [20] To determine if the apparent movement of the
539 boundary was associated with physical advection, a simple
540 simulated drifter experiment was performed (Figure 9).
541 48 modeled drifters were placed along the frontal boundary
542 on 31 July and sequentially assimilated the surface current
543 fields in hourly time steps. The predicted position of the

544major boundary feature was generally in good agreement
545with the location of the boundary on 2 August. The
546predicted boundary has a more pronounced ‘‘hammer-
547head’’ appearance much like that of the boundary on

Figure 5. High-frequency boundary locations as calculated from equation (5). The contrast indicates
how often a particular pixel was designated as a boundary. The most frequent boundaries represent water
types that are easily separable in predictor space. Boundaries become more distinct from 14 July to 2
August.

Figure 6. The boundary frequency calculated by equation 5
related to the total number of boundaries drawn. The days
with more disorganized boundaries (14 and 21 July) have
less low-and high-frequency boundaries and more medium-
frequency boundaries. This causes the disorganized look on
these days and indicates that the clustering algorithms had a
difficult time coming to similar solutions. Days 31 July and
2 August had more low-frequency and high-frequency
boundaries and low medium-frequency boundaries indicat-
ing that the clustering algorithms were in agreement more
often and that water types were consistently distinguished.
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Figure 7. The gradient defined by equations (6), (7), and (8). The gradients are a relative measure of
how different adjacent water masses are. Because no two adjacent pixels are equal, the gradient is never
zero. The background gradient value for this study is approximately 10, with a standard deviation of
approximately 10. Gradient values larger than 20 in this study are considered to be significant. Stronger
gradients were evident in days 31 July and 2 August. This indicates that the water types on either side of
the boundary are markedly different. However, strong gradients are not necessarily coincident with high-
or medium-frequency boundaries because two water types may be readily distinguishable in predictor
space but still be relatively close to one another.

Figure 8. Boundary gradients overlaid with surface current fields with the surface current spatial mean
subtracted for visual clarity. Areas with larger gradients are coincident with convergent and divergent
areas, indicating that local current structure accounts for the gradient locations. However, not all
convergent areas had gradients associated with them.
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548 2 August. In addition the northern protrusion of the front
549 moved southward, approximating its location on 2 August.
550 Because the predicted position of the boundary region
551 approximates the location of the boundary on 2 August, it
552 suggests that local advection processes are largely respon-
553 sible for changes between 31 July and 2 August.

555 4. Discussion

556 [21] AVHRR and ocean color satellite products are used to
557 measure or infer several ocean processes. These include the
558 tracking of the Gulf Stream [Auer, 1987], the modeling of
559 Gulf Stream rings [Glenn et al., 1990] and to estimate global
560 ocean primary production [Behrenfeld and Falkowski,
561 1997]. New production in an ocean system has also been
562 estimated through the combination of AVHRR and ocean
563 color [Sathyendranath et al., 1991]. To estimate new pro-
564 duction, water types were defined intuitively, to which an
565 idealized biomass profile was assigned. Conceivably, errors
566 could be introduced in this type of approach if the way in
567 which water types were defined was incorrect. Karabashev
568 et al. [2002] addressed the water type problem through K
569 means cluster analysis of SeaWiFS data; however, the
570 number of clusters chosen (k = 20) was subjective.
571 [22] More recently, Martin-Traykovski and Sosik [2003]
572 show very convincingly that there exist distinct optical water
573 types in the Mid-Atlantic Bight region, and that they can be
574 successfully discriminated. Their study developed a feature-
575 based classification based on remote sensing reflectance in
576 three wave bands and used a training set of data with known
577 water types to develop classifiers. The method was evaluated
578 on the ability of the classifiers to properly classify pixels into
579 the correct categories.A goodness of fitmeasurewas used as a
580 measure for determining howvariable thewater iswithin each
581 water mass. This method works very well if some a priori
582 knowledge about the water types or water masses present is

583available. The FOM approach builds on this technique and
584does not require a training set of data, or prior knowledge of
585the water masses present, as it strictly looks for inherent
586structure in the data. Additionally, the method allows for the
587estimation of the strengths of the fronts between water types
588in physical space and temporal changes in boundary locations
589due to local advective processes. TheMartin-Traykovski and
590Sosik [2003] method provides a solid foundation for water
591mass classification from space and complements this effort as
592the methods could be run in conjunction to elucidate water
593mass characteristics based on derived satellite products.
594[23] In general, the water masses detected in this study
595were a nearshore plume, a water mass over the continental
596shelf separated by the shelf break front, water offshore the
597shelf break front and a warm-core ring. As for their origins,
598we can only speculate as satellites only detect their surface
599expressions. The nearshore water mass is most likely from
600the Hudson River, but it could also be upwelled water
601driven by southwest winds (S. M. Glenn et al., Biogeo-
602chemical impact of summertime coastal upwelling in the
603Mid-Atlantic Bight, submitted to Journal of Geophysical
604Research, 2003) The origin of the shelf water is from glacial
605melt along the southern Greenland coast that flows south to
606the MAB as a buoyant coastal current [Beardsley and
607Winant, 1979; Chapman and Beardsley, 1989]. Beyond
608the shelf break, water masses and the warm-core ring reflect
609the Gulf Stream and or the Sargasso Sea.
610[24] This approach to water mass classification has five
611basic steps: i) project predictors measured for each water
612parcel into standardized predictor space; ii) use a suite of
613clustering algorithms to detect clusters in multidimensional
614predictor space data which are analogous to water types;
615iii) use the FOM statistic to determine a reasonable range of
616how many water types exist; iv) map water types into
617geographic space and determine the most frequent bound-
618aries between water masses; v) evaluate the difference
619between water types in predictor space as a measure of
620the difference or gradient between defined water masses.
621What this analysis provides are means that validate and add
622mathematical rigor to intuition about the water masses
623present in this study. The remaining portion of the
624paper will discuss the factors that must be considered
625when interpreting the water mass boundaries and gradients
626calculated by this analysis.

6274.1. Standardization of Variables

628[25] The three predictors were standardized to their respec-
629tive means and standard deviations so that the variation
630observed in each predictor gets equal weight in this analysis.
631Without this standardization, temperature alone would have
632dominated the results because it is numerically on the order of
633101 units while Rrs is numerically on the order of 10�3 units.
634However, in doing this the water mass boundaries and
635gradients can only be compared within the group that was
636standardized, in this case the 4 days presented here. This is an
637important consideration in interpreting the results of the
638algorithm. Large gradients and frequent boundaries surround
639the obvious optical load seen on 31 July and 2 August in
640Rrs(555) because it represented a large change in optical
641predictors compared to all of the data in this analysis. While
642this bloom is a distinct feature for those 4 days, if the question
643were whether this feature is distinct compared to a seasonal

Figure 9. Results of simulated drifter experiment. The
predicted location of 48 drifters on 2 August based on the
initial position of the 31 July boundary by assimilating
the CODAR measured surface currents generally approx-
imates the location and shape of the boundary on 2 August.
This indicates that the apparent movement of the boundary
can be generally attributed to local advective processes.
Also, this indicates that water masses in this area can be
tracked effectively.
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644 trend or annual trend, the 4-day data set would need to be
645 standardized to the mean and variability of the season or year.
646 The same principle applies for a comparison of these images
647 to images taken in another location or in reference to larger
648 regions. For example, for a comparison of the gradients in this
649 image to dynamics in another coastal region, the mean and
650 variability of both regions would have to be included for
651 proper comparison. While this nearshore optical load may be
652 very distinct in the context of these 4 days in this particular
653 region, its distinctness seasonally or annually in this region
654 may be different depending on the inherent mean and vari-
655 ability of the system.
656 [26] While standardization of the variables is important
657 for interpretation of the results, it is also important to note
658 that standardization of the data does not guarantee that the
659 data are normally distributed. Examining Figure 1, one can
660 see that the temperature and the Rrs(490) are fairly normally
661 distributed (i.e., the area with high values is approximately
662 equal to area with low values, and the majority of the area is
663 covered with midrange values). In the case of Rrs(555), most
664 of the area is covered with low values and only a small area
665 nearshore is covered with high values. This means that the
666 data have a slightly skewed distribution. Therefore, in
667 predictor space, despite standardization of this particular
668 data set, there is a larger range of data along the Rrs(555) axis,
669 thus waters with high Rrs(555) values in this study are more
670 easily discriminated in parameter space.

671 4.2. Predictor Space Structure, Frequent Boundaries,
672 and Gradients

673 [27] The suite of clustering algorithms was used to detect
674 the inherent structure or water types in predictor space
675 represented in four composite data sets of SST, Rrs(490) and
676 Rrs(555). For increased computational speed clusters were
677 defined from 2 to 30, however it is mathematically possible
678 to define nwater typeswhere each observation is unique. This
679 is the challenge associated with categorizing a known con-
680 tinuum of data; it is difficult to determine how different an
681 observation of SST, Rrs(490) and Rrs(555) should be before it is
682 considered a separate water type. The FOM statistic provides
683 a mean to address this problem. While not providing a
684 definitive answer as to how many water types existed in this
685 data set, it did reduce the range of possibilities from n water
686 types to 2-TAF water types. The geographic distribution of
687 water types detected by the clustering algorithms between 2
688 and TAF is illustrated in Figure 5. The significance of high-
689 frequency boundaries in this figure is that they represent
690 consistent divisions of water types detected by more than one
691 clustering algorithm at more than one cluster number (k). In
692 essence, the four clustering algorithms vote by majority of
693 what data in predictor space determine the dominant water
694 types. However, because this technique uses the similarity of
695 solutions by different clustering algorithms to determine
696 dominate boundaries of water masses, the dissimilar solu-
697 tions, which represent the low-frequency boundaries in
698 Figure 5, represent somewhat of a ‘‘forced’’ result due to
699 low signal.
700 [28] While boundaries may be consistently reflecting rec-
701 ognizable water types in predictor space by the clustering
702 algorithms, the frequency of boundaries is not necessarily
703 related to the gradients separating the water masses. For
704 example, on 14 July several high-frequency boundaries were

705present indicating that the clustering algorithms were finding
706consistent structure in predictor space indicating discrete
707water types. However, gradient analysis of that same day
708indicates that while distinct water types are present in the data
709set, the differences between them are relatively small. This is
710different than 31 July and 2 August when the most frequent
711boundary also reflected a strong gradient. Therefore, for
712complete interpretation of water mass characteristics, both
713frequency of boundaries and gradient strengths must be
714considered. For example, a high-frequency water mass
715boundary is calculated on 21 July at approximately 40�N,
71673�W which is the same frequency as the water mass
717boundary calculated for the nearshore ‘‘hammer-head’’ shape
718on 31 July and 2 August (Figure 5), however the gradient
719calculated for this boundary (Figure 7) is weak compared to
720gradients found on 31 July and 2August. This result indicates
721that the boundary on 21 July is separating distinct water types
722in predictor space, however the water masses represented by
723these water types are not nearly as different as the water
724masses separated along the ‘‘hammer-head’’ shape on 31 July
725and 2 August. A distinct frontal region cam be inferred on
72621 July in this area, but the water masses that are meeting
727at this front are not as different as ones encountered
728elsewhere in this analysis.

7294.3. Current Structure, Boundaries, and Gradients

730[29] The measured current structure associated with the
731boundaries and gradients indicate that physical features in
732the current field such as convergent zones and horizontal
733sheers are generally associated with water mass bound-
734aries. This suggests that the physical processes are driving
735the propagation of the frontal region, as opposed to
736spurious changes in the optics due to changes in biomass
737or SST due to solar sea surface warming. Furthermore, it
738has been shown that optical properties are highly related
739to spatial physical dynamics in this region [Oliver et al.,
7402004; Schofield et al., 2002]. However, it should be noted
741that the current resolution (6 km) averaged over three
742hours might be too coarse to resolve all pertinent currents
743that are shaping these complex fronts. The drifter simu-
744lation (Figure 9) from 31 July to 2 August shows that the
745positions of water mass boundaries in this study are also
746related largely to local advective processes. The predicted
747boundary location of the 31 July boundary on 2 August
748using assimilated CODAR fields is very similar to the
749observed boundary position on 2 August. The current
750magnitudes and directions are sufficient to explain not only
751the general location of the water mass boundary, but also
752how some of the specific features form such as the
753protrusion of the northern horn of the ‘‘hammer-head’’
754shape. Discrepancies between the predicted location of
755the boundary on 2 August and the actual location of the
756boundary on 2 August may be due to local vertical sheers.
757The CODAR system measures the current velocity of
758approximately the top meter of the water column, while
759the boundary location is responding to the integrated depth
760averaged current. Despite this, these results suggest that at
761least over the short term in this coastal region, water masses
762can be identified and tracked.
763[30] Presently, ocean observatories are being developed
764world wide and the water mass analysis presented here is an
765efficient way to assimilate observational data and objectively
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766 describe prevalent water types in a system as well as
767 describe the strengths of the boundaries between them.
768 From an operational standpoint, this can be a powerful tool
769 in determining sampling strategies for specific experiments.
770 Depending on the variables of interest, this type of analysis
771 can be used when the position of water masses defined by
772 other predictors or many predictors are more cryptic and
773 nonintuitive. With the development of remote sensing
774 optical inversion algorithms that detect functional groups
775 of phytoplankton, this analysis can be used to detect clusters
776 of communities and identify ecotones. These ecotone
777 regions often have higher primary and secondary production
778 leading to higher fish production [Pingree et al., 1974]. In
779 addition, this type of analysis can be used in understanding
780 the biogeochemistry of a particular water mass and be able
781 to track it in the context of an observing system.

783 5. Conclusion

784 [31] The goal of this study was to determine if specific
785 water types could be identified and mapped as distinct water
786 masses in a coastal region using satellite data from AVHRR
787 and SeaWiFS, and whether the measured surface current
788 field supported the boundaries and gradients in these maps.
789 Because of the episodic and dynamic nature of coastal
790 regions, optical discriminators were added to a water mass
791 analysis to resolve water types that would not be resolved
792 only by a single suite of parameters. To do this tools were
793 adapted from the field of bioinformatics to constrain the
794 number of water types in this study. On the basis of the
795 boundary and gradient analysis, water types based on
796 temperature and remote sensing reflectance could be
797 mapped and that the relative differences between them
798 could be estimated. Furthermore, the boundaries and gra-
799 dients were generally colocated with features in the current
800 field. Simulated drifter experiments show that the location
801 of these boundaries is largely a result of local advective
802 processes. This suggests that the predictors used in this
803 experiment change slow enough to act as effective tracers of
804 water masses over short timescales.
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