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As part of an effort to build an integrated observation and modeling system for the New York Bight, this
study explores observing strategy evaluation using a representer-based method. The representer of a sin-
gle observation describes the covariance between the observed quantity and ocean state errors at all loca-
tions at any time within the assimilation window. It also describes the influence of the observation on
control variable correction in a 4D variational data assimilation system. These properties hold for the
combination of representers that is associated with a group of observations and functions of model vari-
ables that combines model variables (e.g. salt flux). The representer-based method is used here to identify
which of a set of proposed tracks for an autonomous coastal glider is better for predicting horizontal salt
flux within the Hudson Shelf Valley in a 2-day forecast period. The system is also used to compare differ-
ent observation strategies. We show that a glider that traverses a regular transect influences a larger area
than a continuously profiling mooring, but the mooring carries stronger influence at the observation loca-
tion. The representer analysis shows how the information provided by observations extends toward the
dynamically upstream and how increasing the duration of the analysis window captures more dynamical
connections and expands the area of influence of the observations in data assimilation. Overall, the study
demonstrates that the representer methodology can quantitatively contrast different observational strat-
egies and determine spatial patterns and temporal extent of the influence of observations, both of which
are helpful for evaluating the design of observation networks.

Published by Elsevier Ltd.
1. Introduction

Ocean observation technologies developed in recent decades
have significantly expanded the scope and density of data available
for coastal oceanic research. While largely used to study the oceans
directly, observations are also increasingly used to correct numer-
ical models using methods of data assimilation developed to im-
prove state estimation and ocean prediction. The capability to
simultaneously deploy numerous instruments of differing types
during intensive observing experiments, and the development of
sustained integrated coastal ocean observing systems, have bol-
stered the demand for objective methods of evaluating observa-
tional strategies. Observing system design considerations are
generally motivated by a need for targeted observation of a partic-
ular aspect of regional ocean circulation, or a desire to deploy
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instruments in an adaptive sampling mode to capture transient
or moving features. Designing a targeted observation program in
conjunction with a data assimilation (DA) system has the objective
of selecting the most efficient observation types and locations to
improve model analysis or forecast of a certain physical quantity
of interest given known instrument capabilities and practical logis-
tical constraints on their deployment and operation.

Targeted observation design is an active research topic in the
numerical weather forecast community (Langland, 2005; Rabier
et al., 2008), and there are different design approaches: singular
vector-type techniques (Leutbecher, 2003; Palmer et al., 1998),
adjoint sensitivity-type techniques (Bergot, 1999; Wu et al.,
2007), observation sensitivity-type techniques (Baker and Daley,
2000; Langland and Baker, 2004), and ensemble transform-type
techniques (Bishop and Toth, 1999; Bishop et al., 2001).

Singular vector techniques find and then constrain the most
rapidly growing error structures associated with a norm over a
finite time interval. The norm is chosen to describe a physical
quantity of interest, e.g. forecast uncertainty or total energy. Ad-
joint sensitivity techniques identify the state variables and geo-
graphic locations to which a chosen physical quantity is most
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sensitive. Both adjoint sensitivity and singular vector approaches
identify where new information would diminish forecast error in
a DA system, but neither take into consideration existing or
planned observations. Where best to acquire new targeted obser-
vations to complement existing observations can be addressed in
observation sensitivity and ensemble transform techniques. The
Observation sensitivity approach determines the effect of each
assimilated observation on the analysis and forecast of a chosen as-
pect using the adjoint of the DA and forecast system so that the
added information of hypothetical observations can be obtained.
Ensemble transform techniques use an ensemble of forecast simu-
lations to retrieve the forecast error covariance and then seek the
observation pattern which best minimizes forecast uncertainty.

In contrast to meteorology, there are relatively few published
studies of targeted observations in oceanography. Most recent
studies employing DA in oceanography emphasize state estima-
tion, and to complement these targeted observation efforts have
paid greatest attention to capturing certain ocean phenomena or
variability in an analysis, rather than a forecast. Examples are
works utilizing ensemble transform-type techniques (Ballabrera-
Poy et al., 2007; Frolov et al., 2008; Hackert et al., 1998; Oke and
Schiller, 2007; Sakov and Oke, 2008). Other approaches that have
been taken in oceanography are simulated annealing (Barth and
Wunsch, 1990), adjoint sensitivity (Shulman et al., 2005), array
mode analysis (Bennett, 1990; McIntosh, 1987).

Köhl and Stammer (2004) simplified the observation sensitivity
technique by assuming that model state error is much smaller than
observational error. Targeted observation is typically followed by
DA, so Köhl and Stammer’s (2004) assumption of large observa-
tional error is somewhat contradictory and interpreting the result
as observation sensitivity (as in Baker and Daley (2000)) is ques-
tionable. However, as we will show in the next section, the simpli-
fied technique is still consistent with computing the representer of
the chosen feature of interest – it gives the error covariance be-
tween the chosen feature and ocean state at all locations and times.
Then it is logical to observe the places where the correlation is the
highest.

In the New York Bight (NYB), local forces (e.g. topography, river
discharge and air–sea exchange) and remote forces (e.g. large scale
shelf circulation) interact on a wide continental shelf to create a
coastal zone with complicated dynamics and short time and space
scales of variability (Choi and Wilkin, 2007; Yankovsky, 2003). The
region has been the subject of many studies, both modeling and
observational (Castelao et al., 2008a; Chant et al., 2008; Tilburg
and Garvine, 2003; Wilkin et al., 2005; Wong, 1999; Yankovsky
et al., 2000). The area has seen pioneering deployments of new
observing instruments like autonomous underwater vehicles (glid-
ers) (Schofield et al., 2007), coastal High-Frequency (HF) Radar sys-
tems (Kohut et al., 2006), cabled observatory moorings (Glenn
et al., 2000), and the comprehensive use of multiple satellites
(Schofield et al., 2004) together with ship-borne instruments dur-
ing a series of intensive multidisciplinary observational programs
(Chant et al., 2008). The monitoring of water conditions in the
NYB is operated on a quasi-continuous base, which makes the re-
gion ideal for experimenting with integrating observation and
modeling capabilities.

Part I (Zhang et al., 2010) of this study demonstrated the use of
observations to correct a numerical model using 4Dimensional
Variational (4DVAR) DA. In this paper, Part II, we explore two
applications of a representer-based system to objectively assess
and guide observation strategies. The first application considers
long-term, repeated glider deployments for predicting horizontal
salt flux within the Hudson Shelf Valley (HSV). Our motivation here
is that horizontal tracer fluxes in the HSV potentially bring nutri-
ent-rich deep water up to the euphotic zone and stimulate primary
production on the inner shelf. The second application might be
loosely thought of as a comparison of moored and mobile observa-
tion platforms, with added consideration of different dynamical re-
gimes, with coverage and magnitude of the representer functions
used to guide instrument choice and spacing.

A drawback of representer-based observing system evaluation
is that it does not consider pre-existing observations that might
make the ‘‘designed” mission redundant in a DA system. However,
this is not a major concern because so few subsurface observations
are routinely made in coastal regions. The methodology we de-
scribe is readily adapted to address how observations can be tar-
geted at improving specific aspects of a forecast in a coastal
ocean region. Our examples are somewhat idealized, but the meth-
odology will be tested in earnest in future collaborative field work
integrating models and observations in NYB.

This paper is organized as follows: Section 2 describes the the-
ory of representer-based observing strategy evaluation; Section 3
describes the system setup; Section 4 applies the method to pre-
dicting salt flux within the HSV; Section 5 compares the influences
of different observations; and Section 6 summarizes the work.
2. Representer-based observing strategy evaluation

Let us denote U(t) to be the ocean state vector [u v T S f]T com-
prised of the velocity, temperature, salinity and sea surface height
at all grid points at time t. A representer is the error covariance be-
tween a single element of U(t0) at a particular grid point at time t0,
which we call a ‘‘point aspect of interest” in this paper, and all
other elements of U(t) (a 4-dimensional field) (Bennett, 2002;
Kurapov et al., 2009). We can transform the continuous space-
based representer formulation in Bennett (2002) to a discrete
space-based matrix formulation as

Representer ¼MBMTDð/0; x0; t0Þ; ð1Þ

where M is the tangent linear model propagator and MT is the cor-
responding adjoint operator (Moore et al., 2004), B is the back-
ground error covariance matrix, D is an impulse vector with the
same length as U,

Dð/0; x0; t0Þ ¼
1 / ¼ /0 and x ¼ x0 and t ¼ t0;

0 / – /0 or x – x0 or t – t0;

�

/0 is the variable of interest (/0 e [u v T S f]T), x0 is the location of
interest, and t0 is the time of interest. Then /0(x0, t0) is the point as-
pect of interest.

This representer is based on the linearization around a nonlin-
ear model trajectory. In variational DA, if the physical quantity of
interest is the ocean state at a single observation location, the
representer describes the influence of the observation in the model
(Bennett, 1990; Egbert and Erofeeva, 2002; Kurapov et al., 2009).
In (1), D(/0, x0, t0) can be considered as oL0/oU(t0), where L0 is
an objective function of a point aspect of interest, L0 = /0(x0, t0).
Hence, the representer gives the error covariance between L0 and
U(t), and (1) becomes

rep
@L0

@Uðt0Þ

� �
¼MBMT @L0

@Uðt0Þ
¼ covðL0;UðtÞÞ: ð2Þ

Here we denote the linear representer operator as rep(�). Notice that
the units of (2) are [L] � [U]. The middle term in (2) is similar to Eq.
(13) in Köhl and Stammer (2004) except for the sampling operator
and observation error covariance matrix that they applied after the
representer.

Next, we extend the representer concept to more general cir-
cumstances. For a and b being any two independent point aspects
of interest at time t0, it can be shown (see Appendix) that



Fig. 1. The model domain (black frame) and bathymetry of the New York Bight in
grayscale. The short straight line across the Hudson Shelf Valley indicates the cross-
section used to compute salt transport within the valley; the dash line is the so-
called Endurance Line glider track regularly sampled by RU-COOL; the long straight
black line is the hypothetic glider track; and the triangle indicates the location of
the hypothetic mooring.
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Crep
@ðaþ bÞ
@Uðt0Þ

� �
¼ covðaþ b;UðtÞÞ; ð3Þ

Crep
@ða� bÞ
@Uðt0Þ

� �
¼ covða� b;UðtÞÞ; ð4Þ

Crep
@ðabÞ
@Uðt0Þ

� �
’ covðab;UðtÞÞ; ð5Þ

and

Crep
@ða=bÞ
@Uðt0Þ

� �
’ covða=b;UðtÞÞ: ð6Þ

Here, Crep(�) denotes the combination of some representers. Note
that in this paper we refer to the superposition of some representers
as a combination of representers to draw a distinction between the
representer of a single observation and the covariance information
given by superposition of a group of representers.

Given Eqs. (3)–(6), it follows that

Crep
@L

@Uðt0Þ

� �
¼ covðL;UðtÞÞ ð7Þ

holds true for L defined as a combination of arithmetic operations
(summation, subtraction, multiplication, and division) on ocean
state variables at time t0. For L constructed as a sum of contribu-
tions from several snapshots over certain time interval,
L = L(U(t)), t e [t1, t0], the associated combination of representers
can be simply obtained as a sum of individual representers because
the system is linear. Eq. (7) is thus still valid.

Provided the feature of ocean dynamics of interest can be ex-
pressed as a function of model variables, e.g. salt transport across
a certain cross-section, we can compute a combination of repre-
senters to give the error covariance between the feature of interest
and ocean variables at all locations at any time in the integration
window. The only restriction is that the linear assumption hold
for the duration of the integration time window.

Suppose observations are to be gathered to determine some fea-
ture of regional ocean dynamics, with no other observations being
available for this purpose. It is logical to deploy instruments at the
place where the state variables have the highest error correlation
with the ocean feature of interest. Assimilation of these observa-
tions into the model will lead to more precise description of the
physical quantity of interest. Note that a representer extends over
times that precede, span, and follow the interval when L is defined.
Hence, representer-based observing system design can guide data
acquisition for forecasting, nowcasting and re-analysis. However,
representer computation depends on the chosen background error
covariance, B, and the linearization around a particular nonlinear
model trajectory. If B or the base trajectory change due to changes
in initial or boundary conditions, surface forcing, or underlying
physics, a new set of representer functions should be computed,
possibly leading to a different observation design.

The use of representers here differs from array mode analysis
(Bennett, 2002). Our approach uses error covariance information
given by representer functions to directly target relocatable
observing system deployments without consideration of any pre-
existing observing network.

3. System setup

3.1. Model configuration

The Regional Ocean Modeling System (ROMS, www.myr-
oms.org), a free-surface, hydrostatic, primitive equation model, is
used in this study. It consists of nonlinear forward, tangent linear
and adjoint models and numerous drivers that utilize the compo-
nent models for adjoint sensitivity, optimal perturbation, repre-
senter-based optimal observation, observation sensitivity, and
4DVAR DA applications (Broquet et al., 2009; Di Lorenzo et al.,
2007; Moore et al., 2004, 2009; Powell and Moore, 2009; Powell
et al., 2008, 2009; Zhang et al., 2009b).

The model domain (Fig. 1) extends from south of Delaware Bay
northeastward to eastern Long Island. Two major rivers are in-
cluded: the Hudson and Delaware. The model has 30 terrain-fol-
lowing vertical layers and 2 km horizontal resolution. The
nonlinear forward control simulation with respect to which the
tangent linear and adjoint models are linearized covers the year
2006 with initial conditions from Zhang et al. (2009a). It uses
Chapman (1985) and Flather (1976) conditions for sea level eleva-
tion and the barotropic component of velocity on the model open
boundaries, respectively. Steady along-shelf flow (Lentz, 2008)
and tidal elevation and current extracted from a regional simula-
tion (Mukai et al., 2002) were imposed on the open boundaries.
Orlanski-type radiation conditions (Orlanski, 1976) were applied
for 3D velocity and tracers. Vertical mixing was parameterized
with the k–kl scheme of general length-scale method (Umlauf
and Burchard, 2003) and quadratic bottom drag. Bulk formulae
(Fairall et al., 2003) with meteorological conditions from the North
American Regional Re-analysis (Mesinger et al., 2006) were applied
to compute air–sea momentum and heat fluxes. River discharges
were from USGS Water Data (http://waterdata.usgs.gov/nwis)
scaled to include ungauged portions of the watershed.
3.2. Representer computation

Computation of the representer described by (1) involves inte-
gration of an adjoint model backward in time, application of a
background error covariance, B, and forward integration of a tan-
gent linear model. The adjoint forcing, oL/oU(t), is applied to the
time interval over which L is defined. The duration of the adjoint
and tangent linear model integrations depends on the processes
of interest, but is also constrained by the period for which the
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linearization holds. Zhang et al. (2009b) tested the linearity
assumption in a model with the same domain but a higher hori-
zontal resolution (1 km) and found that it is valid for 3 days. In
the application presented below analyzing salt flux within the
HSV, we integrated the adjoint model backward for 4 days to con-
sider glider deployments 2 days prior to the defined L.

The background error covariance acknowledges correlations be-
tween the same variable (univariate) and different variables (mul-
ti-variate) at different locations due to dynamical scales and
processes. At the time of this study ROMS implements only a uni-
variate B. It is simulated by solving two diffusion equations (one
for horizontal and the other for vertical) that impose decorrelation
scales chosen here to be 20 km in the horizontal and 2 m in the
vertical. Detailed descriptions of how the background error covari-
ance is treated in ROMS are given by Powell et al. (2008) and Bro-
quet et al. (2009). This neglect of multivariate correlations in B
causes underestimation of the cross-variable information in the
representer. However, we are mainly looking at the variables that
L is defined from which makes the problem less severe. Consistent
with the DA system in Part I, the representer approach here is
based on the ‘‘strong constraint” assumption and neglects model
error. Omitting model error presumably overestimates the covari-
ance information in representer functions. The extent to which
model error and multivariate background error covariances will
change the result will be addressed in future work.

Before proceeding to analyze combinations of representers con-
structed for the NYB, we illustrate the interpretation of a simple
representer computed for a single observation point. Fig. 2 (top
row) shows surface salinity during 5 days in September 2006.
The physical quantity of interest, L, for the purposes of illustration
was chosen to be salinity at position x0 = 73.7�W, 40.3�N (indicated
by the triangle symbol in Fig. 2) at t0 = 2006-09-18 00:00 UTC. To
compute the representer for this simple L the adjoint model is
forced by a delta function in salinity at the place of interest, i.e.
oL/oU(t0) = d (S, x0, t0). Here, we integrate backward for 4 days then
apply the univariate background error covariance with the length
scales noted above. Fig. 2 (bottom row) shows the time evolution
Fig. 2. Surface salinity (top) and surface salinity representer (bottom) at different times
defined; and gray dash lines are 20, 40 and 60 m isobaths.
of surface salinity in the subsequent tangent linear model – the
surface salinity representer for this L.

The modeled salinity shows that the river plume has two
branches. One branch curls southeastward having detached from
the Long Island coast, while the other fresher branch flows south-
ward along the New Jersey coast. The higher salinity water be-
tween them is a shoreward intrusion of mid-shelf water along
the HSV. On 2006-09-18 00:00 UTC, the tip of the southwestward
flowing branch reaches x0. Transport pathways strongly influence
salinity patterns in the NYB (Zhang et al., 2009a) so we expect
properties of water at the point of interest to be correlated with
properties in the two plume branches. The surface salinity repre-
senters show these patterns. At 2006-09-14 00:00 UTC, just after
applying the background error covariance, the surface salinity
representer has a circular pattern of high covariance in the New
York Bight apex centered on a location clearly different from x0.
The circular shape of the pattern stems from the smoothing effect
of the background error covariance. The pattern subsequently
transforms as the tangent linear model integration proceeds. By
2006-09-18 00:00 UTC, the time at which the aspect of interest
is defined, the representer shows surface covariance develops a
two-branch pattern with similarities to the plume. The highest
covariance, not surprisingly, occurs near the point of interest itself,
and decays proceeding upstream back along the plume trajectory.
The error covariance with the other branch along the New Jersey
coast is lower but still greater than in the intervening region influ-
enced by higher salinity mid-shelf waters. The two branches are
connected at the estuary entrance. In the vertical, high error
covariance is concentrated in the surface 15 m (not shown), corre-
sponding to the depth of the surface mixed layer.

The surface salinity representer identifies the area that, 4 days
prior, supplies water to the point of interest, but has also identified
that the same region is a source of water to the New Jersey coastal
current at this time. Couched in terms of DA, the representer indi-
cates that observations made at the point of interest would impact
the assimilation increments in both branches of the flow emanat-
ing from New York Harbor. This simple representer gives error
in 2006. The triangles in the last column indicate the point of interest at which L is
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covariance patterns readily interpreted in terms of the local circu-
lation. Next, we turn our attention to formulating representers that
will aid the evaluation of observing strategies.
Fig. 4. Time series of the modeled subsurface (below 10 m) along-valley salt flux
within the Hudson Shelf Valley during 2006. The thin gray line is the daily-averaged
time series and the thick black line is 24-day low-pass filtered. Positive is
shoreward.
4. Targeted observations

4.1. Background

Flow variability within the HSV is correlated with local wind
and sea level elevation (Mayer et al., 1982; Nelson et al., 1978)
and the mean flow in the valley is shoreward (Zhang et al.,
2009a). Because of seasonal variation in the wind, stratification,
and possibly the remotely forced along-shelf circulation, the shore-
ward ocean water intrusion in the HSV intensifies in winter (Harris
et al., 2003; Nelson et al., 1978). Fig. 3 shows seasonal averages of
the salinity and current at 20 m from the nonlinear forward simu-
lation of 2006. At the cross-section indicated by the short black line
the current at 20 m is shoreward along the valley in spring and
winter with the strongest intrusion in winter. In summer and fall,
the circulation at the cross-section is roughly parallel to the iso-
baths crossing the valley. Fig. 4 shows time series of the vertically
integrated subsurface (below 10 m) salt flux across the cross-sec-
tion over 2006. Shoreward salt flux dominates the winter and
spring seasons (October–April) which is consistent with observa-
tions by Nelson et al. (1978). Subsurface mid-shelf waters have
higher nutrient concentrations and shoreward flow in the HSV fol-
lowed by mixing or upwelling to the surface has likely conse-
quences for local biogeochemical processes.
4.2. Representer-based glider track design

Recognizing the influence of the HSV on local biogeochemistry
and sedimentation, we have formulated an example of repre-
senter-based observing system design aimed at evaluating tracks
for glider missions intended to observe HSV transport processes.
The question we ask is: where are the most suitable places to rou-
tinely deploy two gliders in order to better predict, 2 days in the
future, the along-valley salt flux across a selected cross-section?
The cross-section we choose is indicated by the short lines plotted
in Fig. 3. We define the objective function, L, as the vertically inte-
grated subsurface salt flux 2 days after the glider deployment, and
apply the representer system to obtain the error covariance and
the error correlation between L and variables everywhere at the
deployment time. Observations made where and when the error
correlation is the highest should have the greatest impact on the
model-based analysis. We assume there are no other observations
in the environs of the cross-section.
Fig. 3. Seasonal averages of salinity (in color) and current (arrows) at 20 m depth. Gray l
the Hudson Shelf Valley used to compute the salt flux. (For interpretation of the referen
article.)
The work flow of the system is depicted in Fig. 5. Firstly, a for-
ward nonlinear simulation (control run) is carried out and we as-
sume the simulated result is the truth. Secondly, Lt, the ‘‘true”
subsurface salt flux through the cross-section averaged over
1 day (the 4th day after nominal time zero) and the corresponding
adjoint forcing, oL/oU(t), are computed from the control run.
Thirdly, a representer computation is conducted with 4-day adjoint
model integration and 1-day tangent linear model integration. This
gives the error covariance field at day = 1, two days prior to the
interval over which L is defined. Steps 2 and 3 were then repeated
with the nominal day = 0 advanced by two days at a time over the
entire period of 2006 until a total of 180 combinations of repre-
senters were computed. This ensemble of combinations of repre-
senters was grouped into two sets for winter–spring (October–
April) and summer–fall (May–September). The error correlation
associated with each salinity representer was normalized by the
product of the standard deviations of L and detided model vari-
ables. Each individual correlation map suggests the most suitable
observation locations for the corresponding time, and would be
valuable for adaptive sampling and individual glider mission con-
trol. Here we form an average of all the correlation maps to mea-
sure the overall relevance of a glider track with L were the track
be occupied on repeated missions throughout the season. To avoid
the cancelation of positive and negative correlations, we computed
the root-mean-square (RMS) average of all the correlation fields in
each season set, which we call the relevance function to aid the dis-
tinction. Salinity relevance functions at 20 m depth in both seasons
are presented in Fig. 6.

The average correlation map for summer–fall (Fig. 6a) has high-
est relevance north of the cross-section and the relevance contours
ines are 20, 40, 60 m isobaths and the thick black lines indicate the cross-section of
ces to colour in this figure legend, the reader is referred to the web version of this



Fig. 6. Average salinity correlation field at 20 m for different seasons. Gray lines are
20, 40 and 60 m isobaths and the thick black lines indicate the Hudson Shelf Valley
cross-section where L is defined. Triangles indicate the optimal glider track and
circles the traditional.

Fig. 5. Flows of the representer computation and corresponding twin experiment.
Lt is the ‘‘true” salt flux from the control run; oL/o/ indicates corresponding adjoint
forcing; B is the background error covariance; triangle indicates the time of the
presented combination of representers (2 days before the time interval over which
Lt is defined); obs. indicates the observation window; Lb is the background salt flux
from the perturbed simulation; DA indicates the data assimilation window; and La

is the salt flux forecast given by the models after data assimilation.
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are nearly circular. In winter–spring, the highest relevance occurs
east of the cross-section and is elongated roughly along shelf.
These positions are consistent with the circulation in Fig. 3. In sum-
mer and fall, subsurface current is southward to southwestward, so
upstream to the cross-section is somewhere to the north. In winter
and spring, circulation at the cross-section is shoreward along the
HSV and upstream to the cross-section is to the east or southeast.
Moreover, the relevance in winter–spring season is higher because
the current within the HSV is much stronger and consistently on-
shore at that time.

Guided by the information in the relevance patterns we chose
optimal glider tracks for 2 gliders for each biseasonal period and
present these in Fig. 6 (triangles) along with a traditional design
approach that would simply operate gliders on both sides of the
cross-section (circles). We emphasize that the optimal track is
not obtained from a robust optimization algorithm but chosen
intuitively according to the relevance pattern. We call it ‘‘optimal”
here to distinguish it from the traditional track. True optimization
would require an algorithm that took into consideration con-
straints on glider operation.
4.3. Twin experiments

We evaluate whether the proposed optimal sampling strategy is
indeed advantageous with a set of DA twin experiments, the work
flow for which is depicted in Fig. 5. For each member in the ensem-
ble we took temperature and salinity vertical profiles from the con-
trol run along two tracks: traditional, and optimal according to the
season. Both sets of ‘‘observations” were taken 2 days from the
nominal time zero (Fig. 5), and had the same quantity of data to
make the comparison fair. We then conducted a perturbed nonlin-
ear forward simulation by starting from the end of day = 1 with ini-
tial conditions obtained from the model state 5 days prior
(day = �4 in Fig. 5). Forcing was unchanged from the control run.
The subsurface salt flux at the cross-section at day = 4, Lb, therefore
differs from the truth, Lt. The two sets of observations were assim-
ilated using Incremental Strong-constraint 4DVAR (IS4DVAR) DA
described in Part I (Zhang et al., 2010). The DA window is 1 day
and the ‘‘glider-measured” temperature and salinity profiles were
the only data assimilated. The adjusted initial conditions given
by the two DA analyses were used to initialize two forecast simu-
lations. For the 180 members of the ensemble we therefore have
the true salt flux at the section at day = 4, Lt, the prior conditions
to the DA from the perturbed simulation, Lb, and two forecast real-
izations (one each for the optimal and traditional sampled data
sets), which we denote La.

The added skill of the DA system for the two data sets (Fig. 7)
uses a metric defined as

S ¼ 1� jLa � Ltj
jLb � Lt j

: ð8Þ

S = 0 would not indicate that the forecast is of no value, only that DA
did not improve it. When S > 0, DA has improved the forecast L com-
pared to the prior value. For both seasons, the system assimilating
optimally sampled observations gives a statistically better 2-day
prediction of the salt flux. In summer–fall the improvement in L
for the optimal track is comparable to that obtained with the tradi-
tional tracks, but for winter–spring the improvement in the predic-
tion using optimal tracks is much greater. This reflects differences
in relevance functions. In summer–fall when the inner shelf is strat-
ified and circulation is highly responsive to variable winds the rel-
evance function is weak. Moreover, the areas of high relevance are
close in the optimal and traditional sampling locations (Fig. 6) so
the information is not appreciably different. This suggests that the
proposed semi-routine deployment approach is not suitable for
summer–fall and a strategy more adaptive to daily conditions might
be preferable, whereas the winter–spring optimal sampling strategy
is clearly superior.

Fig. 7 also shows that assimilating the optimal observations
does not necessarily give a better prediction of salt flux on other
days; e.g. the first and the fourth day predictions of salt flux of
the two systems are indistinguishable for both seasons. This is
not surprising because the objective function, L, was defined as
day 2 of the forecast salt flux, and the system as we have config-
ured it accordingly places less weight on other days. This highlights
that the representer-based system is very dependent on the objec-
tive function, which should be carefully defined to meet the pur-
pose of the application.



Fig. 7. Skills of the two twin experiment systems in terms of predicting salt flux within the Hudson Shelf Valley for (a) summer–fall and (b) winter–spring seasons. Vertical
bars are 95% confidence interval.
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5. Comparison of observation influences

Observation influence is a measure that operational oceanogra-
phers and policy makers discuss with regard to integrating
observing systems (Kaiser and Pulsipher, 2004), designing new
observation networks (Oke and Schiller, 2007), or evaluating exist-
ing observations (Frolov et al., 2008). In this section we explore the
use of the representer system to compare observation influences.

The representer associated with a single observation describes
the potential model state increment that the observation can gen-
erate in a 4DVAR assimilation system. As implied by the indirect
representer method (Bennett, 2002), this property extends to the
representer associated with a linear combination of observations.
Here, we restate the property to aid explanation in the following
applications.

An outcome of DA is correction of the model state error at the
observation locations and times. We can quantify this by a gain
function, G, which for a single observation is G0 = /0(x0, t0) �
/t(x0, t0), where /0(x0, t0) is observed quantity in the model and
/t(x0, t0) is the truth. The gain function of a group of observations
can be the superposition of the gain functions of each individual
observation and therefore a function of model state errors. In
4DVAR, assimilation corrects the ocean state not only at the obser-
vation locations but also at other locations and times through the
dynamical and statistical connections that are embedded in the
system, as the representer function depicts. The extent and magni-
tude of the influence on model state increments than can be gen-
erated by assimilating the observations is what we intend to
quantify.

The initial condition, D(/0, x0, t0), to the adjoint model in com-
puting the representer of a single observation can be considered as
the derivative of the corresponding gain function with respect to
model state everywhere at the observation time, oG0/oU(t0). The
resulting representer gives the error covariance of G0 and model
states everywhere at all locations, and therefore outlines the influ-
ences of the observation in a 4DVAR system (Bennett, 2002). For a
group of observations, we can obtain their influences in a 4DVAR
system by combining the representers associated with each obser-
vation. The mathematical basis for this is essentially the same as in
Section 2.

We present three examples to demonstrate this representer-
based observation influence. We consider (i) the area and strength
of influence of two different observing strategies, (ii) how the same
observation strategy has differing influence for different dynamical
regimes, and (iii) how the influence alters with different DA win-
dows. Note that these examples are not aimed at the design of a
particular realistic observation network, but rather are presented
to qualitatively compare the influences of some typical elementary
components of an observational system.
5.1. Comparison of glider and mooring observations

Gliders and moorings are two instrument platforms commonly
deployed in the NYB to measure vertical profiles of temperature
and salinity. We compare their influences in this section. Fig. 1
shows a track typical of the so-called ‘Endurance Line’ cross-shelf
glider section surveyed approximately 10 times per year by the
RU-COOL (Castelao et al., 2008a). We consider a hypothetical glider
transect slightly north of the nominal real track and assume a one-
way mission takes 3 days, which is roughly the time it takes a real
glider to traverse the shelf. To this we compare a hypothetical
mooring that continuously observes temperature and salinity
throughout the water column located at the 20-m isobath of the
glider track.

Our analysis uses 60 days of simulated ocean conditions in April
and May, 2006, from the forward control simulation introduced in
Section 3. Full water column vertical temperature and salinity pro-
files were sampled from the control run at every model time step
(180 s); at a single fixed location in the case of the mooring, and
at locations traversing the shelf over 3 days in the case of the gli-
der. The 2-month period was then separated to twenty 3-day win-
dows and a representer computation was conducted in each
window. Assuming model state error everywhere is proportional
to ocean state anomaly and with the constant scale between model
state error and ocean state anomaly neglected, we define the gain
function as an overall measure of the model state error at the
observation locations and times,

G ¼ 1
N

XN

i

ðTi � �TiÞ2

OTi
þ ðSi � �SiÞ2

OSi

" #
; ð9Þ

where N is the total number of samples, Ti and Si are observed tem-
perature and salinity, respectively, the overbar denotes temporal
mean at each observation location, and OTi and OSi are error covari-
ance of each temperature and salinity observation, respectively.
This definition of gain function is similar to the observational cost
function of 4DVAR DA (Part I). With this definition, the influence
of each observation in the group is essentially scaled by the model
state error at the observation location and time. The resulting total
influences ought to be explained as model-error-scaled influences
of the group observations.

The representer computation is as in Section 4. For each combi-
nation of representers, the adjoint model is integrated backward
for 3 days with adjoint forcing, oG/oU(t), throughout the integra-
tion period, the background error covariance is applied at the nom-
inal t = 0 for the interval, and the tangent linear model is
integrated forward for 6 days to show the observation influences
in both analysis (the first 3 days) and forecast (the last 3 days) peri-
ods. The RMS of the ensemble of 20 error covariance fields was
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then computed for different relative times in the 6-day window.
Fig. 8 shows the RMS average temperature error covariance at
the surface through time.

In the analysis period (the first two columns in Fig. 8) the glider
observations have influence over a wider area than the mooring,
but the strength of influence of the mooring at the observation
location is about twice that of the glider. This result is consistent
with most oceanographers’ intuition on the likely relative value
of the two instruments, but is quantified by the representer analy-
sis. During the forecast period (the last two columns in Fig. 8), the
influence of the glider observations decays, while that of the moor-
ing stays strong. At day 6, 3 days into the forecast, the influence of
the mooring at the observation location is more than three times
stronger than that of the glider, and the area of influence of the
mooring expands quickly along the shelf over the forecast period,
whereas that of glider observation expands little. Thus, it appears
that at day 6 the mooring has greater overall surface influence than
the glider.

In Fig. 9, we plot the influence of data from the two instruments
along the vertical cross-section along the glider track. As inferred
from Fig. 8, the glider influence extends across the shelf while
the mooring has greater magnitude but less spatially extensive
influence centered at the observation location. An interesting fea-
ture in Fig. 9 is that both cross-sections at day 0 show rather great-
er influence in the surface and bottom boundary layer than in the
middle of the water column. This suggests that dynamical connec-
tions in the boundary layers, caused by the wind-driven coastal
upwelling and down-welling, extend the scope of influence of
observations – a consequence of the ocean physics embodied in
the adjoint and tangent linear models.

5.2. Influence of glider observations in different wind regimes

Wind-driven coastal upwelling and down-welling are common
phenomena in the inner shelf of the NYB (Castelao et al., 2008b;
Wong, 1999; Yankovsky and Garvine, 1998), and effective observa-
Fig. 8. Representer-based influence of observations from a glider section (black straigh
times. The influence is measured by the gain function defined in the text. The observatio
forecast computed by the model.
tional strategies for these distinct dynamical regimes are of inter-
est to operational oceanographers. In this section, we take the
hypothetical glider track of Section 5.1 as an example and demon-
strate how its influence differs in upwelling and down-welling
regimes.

The 20 combinations of glider representers from Section 5.1
were separated into two groups according to the average wind
direction in the 3-day observation windows (southerly wind drives
upwelling on the New Jersey coast; northerly wind drives down-
welling). The RMS of the temperature error covariance fields of
each group, at the sea surface, is presented in Fig. 10. The influence
in the analysis window (days 0–3) during upwelling is about twice
as strong as that in the down-welling regime. Coastal upwelling
pulls deep cold water to the surface and down-welling pushes off-
shore surface water onshore, so surface temperature anomalies are
stronger during upwelling and model surface temperature error in
the upwelling regime is larger. Because the combination of repre-
senters computed here is the model-error-scaled influence, the
influence of the glider observations on correcting model state er-
rors is therefore larger in the upwelling regime.

At day 0, the influence of the observations extends further
southward along the coast during upwelling and further north-
ward during down-welling because the model captures the
dynamical upstream of the observed quantities. The upstream
information embodied in the observations and revealed by the
representer analysis concurs with the identification of dynamical
upstream regions by adjoint sensitivity (Zhang et al., 2009b) and
this information would subsequently influence the 4DVAR assimi-
lation. As time proceeds into the forecast window (the last two col-
umns in Fig. 10), the area of influence propagates in the respective
downstream direction for the two regimes.

5.3. Comparison of different data assimilation windows

An advantage of 4DVAR DA is its ability to propagate informa-
tion, e.g. observation innovation, over time, both backward and for-
t lines in top row) and a fixed mooring (white triangle in bottom row) at different
nal period is day 0 to day 3. Days 3–6 represent the influence of observations on the



Fig. 9. Vertical cross-sections of the representer-based influence, at different times, of glider and mooring observations along the glider track in this figure. The white lines in
the second column indicate the mooring location. The observational period is day 0–3. Days 3–6 represent the influence of observations on the forecast computed by the
model.

Fig. 10. Representer-based influence of a glider section (white lines) at different times in wind-driven coast upwelling (top row) and down-welling (bottom row) regimes.
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ward. Ideally, we would like the information to be propagated as
long as possible in order to fully exploit the dynamical connections
captured by the adjoint and tangent linear models. But the duration
that the information can propagate, namely the DA window, is
somewhat constrained by the linearization in 4DVAR systems. For
the same observations, different lengths of the DA window will re-
sult in different observation influence. To show this, we present a
simple example using the representer-based estimate of observa-
tion influence.

We formed four groups of combinations of representers for
observations along the hypothetical glider track. Each group has
20 combinations of representers. The adjoint models in the 4
groups were initialized at the same times and integrated backward
in time for 0, 1, 2 and 3 days, and the tangent linear models were
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integrated forward for 3, 4, 5 and 6 days, respectively, bringing
them all to day = 6. To make the comparison fair, we assumed all
glider observations were made at the instant of the initial times
of the adjoint models; this ensured all representer windows re-
ceived equivalent amounts of data.

The RMS of the error covariance fields in each group give the
average surface temperature influences in Fig. 11. Day = 3 is the
observation time in each representer computation, and day = 6 is
the ending time of the tangent linear integration. Comparing the
plots in each row shows that the longer the window the larger
the area of influence. At day 3, the average influence in the 0-day
window group is confined around the glider track and results en-
tirely from the background covariance immediately extending
the observational information to neighboring points. As the win-
dow becomes longer, the influence spreads out, especially along
the coast, reflecting the added information introduced by the ad-
joint and tangent linear models in regions that are dynamically up-
stream to the data locations. The average influence in the 3-day
window group covers almost the entire New Jersey coast. Note that
the small covariance value (0.01) at the edges of the area of influ-
ence results from the ensemble averaging process. The covariance
of any ensemble member is larger, but with area of influence that is
smaller in extent and skewed toward the upstream region for the
flow at that particular time.

The combination of representers of the 0-day window is analo-
gous to observation influences in sequential DA, e.g., 3DVAR and
Kalman filter-type DA methods. In those methods information
about the dynamical upstream is not exploited; there is no back-
ward in time propagation of observation innovation. In 4DVAR,
the adjoint model propagates the observation innovation back-
ward according to the linearized dynamics and identifies where
corrections should be made to the dynamically upstream initial
conditions, boundary conditions, or surface forcing. The Kalman
smoother shares some of these properties.
Fig. 11. Contours of representer-based influence of a glider section (black straight lines) a
data assimilation window. The contour lines are 0.01, 0.1, 0.5 �C. The observations were
6. Summary

This paper is the second part of a project developing integrated
observation and modeling capabilities in coastal ocean prediction
for the NYB. Part I demonstrated how 4DVAR data assimilation
using ROMS improves ocean state estimates in a realistic pseudo-
real-time setup. This Part is dedicated to the complementary objec-
tive of using an integrated observation-modeling system to im-
prove observing system design.

A representer function describes the error covariance between
a local feature of interest and variables at all locations at any
time. In 4DVAR data assimilation, the representer expresses the
influence of a single assimilated observation and can be used
in the process of cost function minimization in observation space
(Bennett, 2002). To extend the application of the representer be-
yond an isolated observation, we have shown that the combina-
tion of representers associated with a function that combines
model variables, such as salt flux, has properties similar to an
isolated observation. It describes the error covariance between
the physical quantity of interest described by the function and
model variables at all locations at any time within the assimila-
tion window. Assuming there are no complementary observa-
tions and model performance is roughly uniform, then where
the correlation is highest is logically a more optimal place to ac-
quire observations in order for the model to describe the feature
of interest more precisely. Similarly, the combination of repre-
senters associated with a group of observations outlines the
influence of the observations as a whole in a 4DVAR data assim-
ilation system. To consider how a combination of representers
might guide the choice of observational strategies, we sought
an ‘‘optimal” glider track for better model prediction of salt flux
across a cross-section of the Hudson Shelf Valley 2 days after the
glider deployment. An ensemble of combinations of representers
were computed and grouped into two biseasonal periods (sum-
t day 3 (top row) and day 6 (bottom row) in systems with different durations of the
taken at day 3.
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mer–fall, and winter–spring) that share similar characteristics in
the mean circulation. Optimal glider tracks were then picked
heuristically for both seasons according to the correlation maps.
Data assimilation twin experiments verified that glider observa-
tions taken along the proposed ‘optimal’ paths led to greater skill
in term of predicting the salt flux 2 days after the observations
were obtained.

A representer-based system was presented that measures the
influence of a group of observations in a 4DVAR data assimilation
system, and this was used to compare the data influence for differ-
ent observing strategies. We compared the influences of equivalent
amounts of data acquired by a repeat glider cross-shelf section ver-
sus a fixed mooring. The glider section has a wider area of influence
while the mooring has stronger influence in the environs of the
observation location. We compared the influence of the same rou-
tine glider section in different dynamical regimes: wind-driven
coastal upwelling and down-welling. The area of influence of the
glider data is shifted toward the dynamical upstream: southward
along the coast in upwelling and northward along the coast in
down-welling. We evaluated the influence of duration of data
assimilation window lengths, obtaining a result that agrees with
intuition that a longer assimilation window introduces more
dynamical connections and extends the influence of observations
to a larger area.

This work demonstrates the capability of representer-based
systems to aid in developing more optimal observation strategies
and quantifying the extent of influence of a set of observations.
The method can be used to help design the positioning of a single
instrument or an observation network. We emphasize that the no-
tion of what observing strategy is optimal depends on the physical
quantity of interest, but the system we have described is flexible in
its ability to consider quite arbitrary arithmetic functions of the
ocean state, including fluxes and transports, and regional spatial
means or time averages.

The work in this paper approaches the design problem from one
perspective; namely, identifying observing system characteristics
that enhance forecast skill when the data are subsequently
adopted in a 4DVAR assimilation system. True optimization of
observing system design must take into consideration other con-
straints that are instrumental and logistical.
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Appendix. Derivation of Eqs. (3)–(6)

Suppose a and b are two independent variables at particular
locations of interest, x1 and x2, respectively, at time t0, that is,
a = /1(x1, t0) and b = /2(x2, t0), and N is the number of all possible
ocean states. We have two assumptions: (i) the ocean state given
by the control nonlinear simulation is a valid estimate of the
ensemble mean of a set of ocean states, that is, a0 = �a, and b0 = �b,
where subscript 0 stands for the value given by the control simu-
lation and overbar the ensemble mean and (ii) the deviation of
all possible ocean states from the mean is small and the product
of two or more state deviations (e.g. a0b0) is negligible.

Derivation of Eq. (3):
Crep
@ðaþ bÞ
@Uðt0Þ

� �
¼ rep

@a
@Uðt0Þ

� �
þ rep

@b
@Uðt0Þ

� �
¼ covða;UðtÞÞ þ covðb;UðtÞÞ

¼ 1
N

XN

i¼1

ðai � aÞðUiðtÞ �UðtÞÞ
h i

þ 1
N

XN

i¼1

ðbi � bÞðUiðtÞ �UðtÞÞ
h i

¼ 1
N

XN

i¼1

ðai þ bi � ðaþ bÞÞðUiðtÞ �UðtÞÞ
h i

¼ covðaþ b;UðtÞÞ:

Derivation of Eq. (4) is very similar to that of Eq. (3) and there-
fore neglected here.

Derivation of Eq. (5):

Crep
@ðabÞ
@Uðt0Þ

� �
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� �
:

Applying aforementioned assumptions, we have
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Derivation of Eq. (6):
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Applying aforementioned assumptions, we have
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For jb0i=�bj < 1, we employ a Taylor series expansion to get

Crep
@ða=bÞ
@Uðt0Þ

� �
’ 1

N

XN

i¼1

�aþa0i
�b

1

1þ b0i
�b

�
�aþa0i

�b

1

1þ b0i
�b

0
@

1
AðUiðtÞ�UðtÞÞ

2
4

3
5

’ 1
N

XN

i¼1

ai

bi
�ai

bi

� �
ðUiðtÞ�UðtÞÞ

� �
¼ covða=b;UðtÞÞ:
References

Baker, N., Daley, R., 2000. Observation and background adjoint sensitivity in the
adaptive observation-targeting problem. Q. J. R. Meteorol. Soc. 126, 1431–1454.



W.G. Zhang et al. / Ocean Modelling 35 (2010) 134–145 145
Ballabrera-Poy, J., Hackert, E., Murtugudde, R., Busalacchi, A.J., 2007. An observing
system simulation experiment for an optimal moored instrument array in the
tropical Indian Ocean. J. Climate 20, 3284–3299.

Barth, N., Wunsch, C., 1990. Oceanographic experiment design by simulated
annealing. J. Phys. Oceanogr. 20, 1249–1263.

Bennett, A.F., 1990. Inverse methods for assessing ship-of-opportunity networks
and estimating circulation and winds from tropical expendable
bathythermograph data. J. Geophys. Res. 95, 16111–16148.

Bennett, A.F., 2002. Inverse Modeling of the Ocean and Atmosphere. Cambridge
University Press. p. 234.

Bergot, T., 1999. Adaptive observations during FASTEX: a systematic survey of
upstream flights. Q. J. R. Meteorol. Soc. 125, 3271–3298.

Bishop, C.H., Toth, Z., 1999. Ensemble transformation and adaptive observations. J.
Atmos. Sci. 56, 1748–1765.

Bishop, C.H., Etherton, B.J., Majumdar, S.J., 2001. Adaptive sampling with the
Ensemble Transform Kalman Filter. Part I: Theoretical aspects. Mon. Weather
Rev. 129, 420–436.

Broquet, G., Edwards, C.A., Moore, A.M., Powell, B.S., Veneziani, M., Doyle, J.D., 2009.
Application of 4D-variational data assimilation to the California current system.
Dynam. Atmos. Oceans 48, 69–92.

Castelao, R.M., Schofield, O., Glenn, S., Chant, R.J., Kohut, J., 2008a. Cross-shelf
transport of fresh water on the New Jersey Shelf. J. Geophys. Res. 113, C07017.

Castelao, R.M., Glenn, S., Schofield, O., Chant, R.J., Wilkin, J., Kohut, J., 2008b.
Seasonal evolution of hydrographic fields in the central Middle Atlantic Bight
from glider observations. Geophys. Res. Lett. 35, L03617. doi:10.1029/
2007GL032335.

Chant, R.J., Wilkin, J., Zhang, W., Choi, B.-J., Hunter, E., Castelao, R., Glenn, S.M.,
Jurisa, J., Schofield, O., Houghton, R., Kohut, J., Frazer, T.K., Moline, M.A., 2008.
Dispersal of the Hudson River Plume in the New York Bight: synthesis of
observational and numerical studies during LaTTE. Oceanography 21, 148–161.

Chapman, D.C., 1985. Numerical treatment of cross-shelf open boundaries in a
barotropic ocean model. J. Phys. Oceanogr. 15, 1060–1075.

Choi, B.-J., Wilkin, J.L., 2007. The effect of wind on the dispersal of the Hudson River
plume. J. Phys. Oceanogr. 37, 1878–1897.

Di Lorenzo, E., Moore, A.M., Arango, H.G., Cornuelle, B.D., Miller, A.J., Powell, B., Chua,
B.S., Bennett, A., 2007. Weak and strong constraint data assimilation in the
inverse Regional Ocean Modeling System (ROMS): development and application
for a baroclinic coastal upwelling system. Ocean Model. 16, 160–187.

Egbert, G.D., Erofeeva, S.Y., 2002. Efficient inverse modeling of barotropic ocean
tides. J. Atmos. Oceanic Technol. 19, 183–204.

Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A., Edson, J., 2003. Bulk
parameterization of air–sea fluxes: updates and verification for the COARE
algorithm. J. Climate 16, 571–591.

Flather, R.A., 1976. A tidal model of the northwest European continental shelf. Mem.
Soc. R. Sci. Liege, Ser. 6 (10), 141–164.

Frolov, S., Baptista, A., Wilkin, M., 2008. Optimizing fixed observational assets in a
coastal observatory. Cont. Shelf Res. 28, 2644–2658.

Glenn, S.M., Grassle, J.F., von Alt, C.J., 2000. A well sampled ocean: the LEO approach.
Oceanus 42, 28–30.

Hackert, E.C., Miller, R.N., Busalacchi, A.J., 1998. An optimized design for a moored
instrument array in the tropical Atlantic Ocean. J. Geophys. Res. 103, 7491–7509.

Harris, C.K., Butman, B., Traykovski, P., 2003. Winter-time circulation and sediment
transport in the Hudson Shelf Valley. Cont. Shelf Res. 23, 801–820.

Kaiser, M.J., Pulsipher, A.G., 2004. The potential value of improved ocean
observation systems in the Gulf of Mexico. Mar. Policy 28, 469–489.

Köhl, A., Stammer, D., 2004. Optimal observations for variational data assimilation.
J. Phys. Oceanogr. 34, 529–542.

Kohut, J.T., Roarty, H.J., Glenn, S.M., 2006. Characterizing observed environmental
variability with HF doppler radar surface current mappers and acoustic doppler
current profilers: environmental variability in the coastal ocean. IEEE J. Oceanic
Eng. 31, 876–884.

Kurapov, A.L., Egbert, G.D., Allen, J.S., Miller, R.N., 2009. Representer-based analyses
in the coastal upwelling system. Dynam. Atmos. Oceans 48, 198–218.

Langland, R.H., 2005. Issues in targeted observations. Q. J. R. Meteorol. Soc. 131,
3409–3425.

Langland, R.H., Baker, N.L., 2004. Estimation of observation impact using the NRL
atmospheric variational data assimilation adjoint system. Tellus A 56, 189–201.

Lentz, S.J., 2008. Observations and a model of the mean circulation over the Middle
Atlantic Bight continental shelf. J. Phys. Oceanogr. 38, 1203–1221.

Leutbecher, M., 2003. A reduced rank estimate of forecast error variance changes
due to intermittent modification of the observing network. J. Atmos. Sci. 60,
729–742.

Mayer, D.A., Han, G.C., Hansen, D.V., 1982. Circulation in the Hudson Shelf Valley:
MESA physical oceanographic studies in New York Bight 1. J. Geophys. Res. 87,
9563–9578.
McIntosh, P.C., 1987. Systematic design of observational array. J. Phys. Oceanogr. 17,
885–902.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., Jovi an,
D., Woollen, J., Rogers, E., Berbery, E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins,
W., Li, H., Lin, Y., Manikin, G., Parrish, D., Shi, W., 2006. North American regional
reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360.

Moore, A.M., Arango, H.G., Di Lorenzo, E., Cornuelle, B.D., Miller, A.J., Neilson, D.J.,
2004. A comprehensive ocean prediction and analysis system based on the
tangent linear and adjoint of a regional ocean model. Ocean Model. 7, 227–258.

Moore, A.M., Arango, H.G., Di Lorenzo, E., Miller, A.J., Cornuelle, B.D., 2009. An
adjoint sensitivity analysis of the Southern California Current circulation and
ecosystem. Part I: The physical circulation. J. Phys. Oceanogr. 39, 702–720.

Mukai, A.Y., Westerink, J.J., Luettich, R.A., Mark, D., 2002. Eastcoast 2001, A Tidal
Constituent Database for the Western North Atlantic. Gulf of Mexico and
Caribbean Sea, Tech. Rep. ERDC/CHL TR-02-24, 196 pp.

Nelson, T.A., Gadd, P.E., Clarke, T.L., 1978. Wind-induced current flow in the upper
Hudson Shelf Valley. J. Geophys. Res. 83, 6073–6082.

Oke, P.R., Schiller, A., 2007. A model-based assessment and design of a tropical
Indian ocean mooring array. J. Climate 20, 3269–3283.

Orlanski, I., 1976. A simple boundary condition for unbounded hyperbolic flows. J.
Comput. Phys. 21, 251–269.

Palmer, T.N., Gelaro, R., Barkmeijer, J., Buizza, R., 1998. Singular vectors, metrics, and
adaptive observations. J. Atmos. Sci. 55, 633–653.

Powell, B.S., Moore, A.M., 2009. Estimating the 4DVAR analysis error of GODAE
products. Ocean Dynam. 59, 121–138.

Powell, B.S., Arango, H.G., Moore, A.M., Di Lorenzo, E., Milliff, R.F., Foley, D., 2008.
4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean
Modeling System (ROMS). Ocean Model. 25, 173–188.

Powell, B.S., Moore, A.M., Arango, H.G., Di Lorenzo, E., Milliff, R.F., Leben, R.R., 2009.
Near real-time ocean circulation assimilation and prediction in the Intra-
Americas Sea with ROMS. Dyn. Atmos. Oceans 48, 46–68.

Rabier, F., Gauthier, P., Cardinali, C., Langland, R., Tsyrulnikov, M., Lorenc, A., Steinle,
P., Gelaro, R., Koizumi, K., 2008. An update on THORPEX-related research in data
assimilation and observing strategies. Nonlin. Process. Geophys. 15, 81–94.

Sakov, P., Oke, P.R., 2008. Objective array design: application to the tropical Indian
Ocean. J. Atmos. Oceanic Technol. 25, 794–807.

Schofield, O., Arnone, R., Bissett, P., Dickey, T.D., Davis, C., Finkel, Z., Oliver, M.,
Moline, M.A., 2004. Watercolors in the coastal zone: what can we see?
Oceanography 17, 30–37.

Schofield, O., Kohut, J., Aragon, D., Creed, L., Graver, J., Haldeman, C., Kerfoot, J.,
Roarty, H., Jones, C., Webb, D., Glenn, S.M., 2007. Slocum gliders: robust and
ready. J. Field Robot. 24, 1–14.

Shulman, I., McGillicuddy, D.J., Moline, M.A., Haddock, S.H.D., Kindle, J.C., Nechaev,
D., Phelps, M.W., 2005. Bioluminescence intensity modeling and sampling
strategy optimization. J. Atmos. Oceanic Technol. 22, 1267–1281.

Tilburg, C.E., Garvine, R.W., 2003. Three-dimensional flow in a coastal upwelling
zone: convergence and divergence on the New Jersey Shelf. J. Phys. Oceanogr.
33, 2113–2115.

Umlauf, L., Burchard, H., 2003. A generic length-scale equation for geophysical
turbulence models. J. Mar. Res. 61, 235–265.

Wilkin, J.L., Arango, H.G., Haidvogel, D.B., Lichtenwalner, C.S., Glenn, S.M., Hedström,
K.S., 2005. A regional ocean modeling system for the long-term ecosystem
observatory. J. Geophys. Res. 110. doi:10.1029/2003JC002218.

Wong, K.C., 1999. The wind driven currents on the Middle Atlantic Bight inner shelf.
Cont. Shelf Res. 19, 757–773.

Wu, C.-C., Chen, J.-H., Lin, P.-H., Chou, K.-H., 2007. Targeted observations of tropical
cyclone movement based on the adjoint-derived sensitivity steering vector. J.
Atmos. Sci. 64, 2611–2626.

Yankovsky, A.E., 2003. The cold-water pathway during an upwelling event on the
New Jersey shelf. J. Phys. Oceanogr. 33, 1954–1966.

Yankovsky, A.E., Garvine, R.W., 1998. Subinertial dynamics on the Inner New Jersey
shelf during the upwelling season. J. Phys. Oceanogr. 28, 2444–2458.

Yankovsky, A.E., Garvine, R.W., Munchow, A., 2000. Mesoscale currents on the inner
New Jersey Shelf driven by the interaction of buoyancy and wind forcing. J.
Phys. Oceanogr. 30, 2214–2230.

Zhang, W.G., Wilkin, J.L., Chant, R.J., 2009a. Modeling the pathways and mean
dynamics of river plume dispersal in New York Bight. J. Phys. Oceanogr. 39,
1167–1183.

Zhang, W.G., Wilkin, J.L., Levin, J.C., Arango, H.G., 2009b. An Adjoint sensitivity study
of buoyancy- and wind-driven circulation on the New Jersey Inner shelf. J. Phys.
Oceanogr. 39, 1652–1668.

Zhang, W.G., Wilkin, J.L., Arango, H.G., 2010. Towards an integrated observation and
modeling system in the New York Bight using variational methods. Part I:
4DVAR Data Assimilation. Ocean Model., sub judice.

http://dx.doi.org/10.1029/2007GL032335
http://dx.doi.org/10.1029/2007GL032335
http://dx.doi.org/10.1029/2003JC002218

	Towards an integrated observation and modeling system in the New York Bight using variational methods. Part II: Repressenter-based observing strategy evaluation
	Introduction
	Representer-based observing strategy evaluation
	System setup
	Model configuration
	Representer computation

	Targeted observations
	Background
	Representer-based glider track design
	Twin experiments

	Comparison of observation influences
	Comparison of glider and mooring observations
	Influence of glider observations in different wind regimes
	Comparison of different data assimilation windows

	Summary
	Acknowledgments
	 Derivation of Eqs. (3)–(6)
	References


