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Four-dimensional variational data assimilation (4DVAR) in the Regional Ocean Modeling System (ROMS)
is used to produce a best-estimate analysis of ocean circulation in the New York Bight during spring 2006
by assimilating observations collected by a variety of instruments during an intensive field program. An
incremental approach is applied in an overlapped cycling system with 3-day data assimilation window to
adjust model initial conditions. The model-observation mismatch for all observed variables is reduced
substantially. Comparisons between model forecast and independent observations show data assimila-
tion improves forecast skill for about 15 days for temperature and salinity, and 2–3 days for velocity
when the model is forced by a concatenation of successive 24-h meteorological forecasts. These time
scales for forecast improvement due to data assimilation may be less in practice with real-time multi-
day forecast meteorology. Tests that limit the data used to certain subsets show that assimilating satellite
sea surface temperature data improves the forecast of surface and subsurface temperature, assimilating
in situ temperature and salinity data from gliders improves the subsurface temperature and salinity fore-
cast, and assimilating HF-radar surface current data improves the velocity forecast yet degrades the sub-
surface temperature forecast – an effect that is attributed to the lack of cross-variable covariance in the
univariate background error covariance used here. During some time periods the convergence for velocity
is poor as a result of the data assimilation system being unable to adjust for errors in the applied winds
because surface forcing is not among the control variables. The capability of a 4DVAR data assimilation
system to reduce model-observation mismatch and improve forecasts in the coastal ocean is demon-
strated, and the value of accurate meteorological forcing is highlighted.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Data assimilation (DA) is to use observations in conjunction
with models to better describe the ocean (Bennett, 2002; Evensen,
2007; Wunsch, 2006). The time-dependent variational method
(4DVAR) is one DA approach and it takes the linearized dynamical
model into consideration while adjusting model control variables
to fit observations. The 4DVAR method proceeds by iteratively
minimizing a cost function defined as the weighted mismatch be-
tween the observations and the model state at the observation
location and time, plus additional constraints such as the size of
the permitted adjustment to the model control variables. In princi-
ple, the control variables to be adjusted can be anything imposed
external to the model, such as initial conditions, boundary condi-
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tions, and forcing, or aspects internal to the model such as vertical
mixing parameters and missing physics.

Assuming the model physics is ‘‘perfect” (i.e. applying the so-
called ‘‘strong constraint” of Talagrand and Courtier (1987)) there
are two practical ways to implement the minimization: (i) Incre-
mental Strong-constraint 4DVAR (IS4DVAR) (Courtier et al.,
1994), and (ii) representer-based 4DVAR (Bennett, 2002). In IS4D-
VAR an iterative scheme minimizes the cost function using infor-
mation from the Tangent Linear and Adjoint models.
Representer-based 4DVAR seeks coefficients of the observational
representers that minimize the model-observation mismatch.
Courtier (1997) proved the equivalence of the algorithms. Both
algorithms have been applied to studies of ocean variability on
large (Stammer et al., 2004; Vialard et al., 2003; Vossepoel et al.,
2004; Weaver et al., 2005; Wunsch and Heimbach, 2007) and re-
gional and coastal scales (Broquet et al., 2009; Di Lorenzo et al.,
2007; Hoteit and Köhl, 2006; Kurapov et al., 2007; Powell et al.,
2008; Scott et al., 2000; Smith and Ngodock, 2008).

The New York Bight (NYB) lies in the center of the Mid-Atlantic
Bight (MAB) adjacent to the coasts of Long Island and New Jersey.
Circulation in the NYB is influenced by remotely-forced southward
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Fig. 1. The study domain and observation locations. The black frame indicates the
model domain; Bathymetry of the New York Bight is in grayscale; Black dash lines
are contours of model isobaths in meters; the yellow pentagram indicates the
location of Ambrose Tower; the green squares indicate the locations of five HF-
radar stations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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along-shelf mean flow (Lentz, 2008), local forces due to river dis-
charge and wind, and variable bathymetry (Castelao et al., 2008;
Chant et al., 2008a; Choi and Wilkin, 2007; Tilburg and Garvine,
2003; Wong, 1999; Yankovsky et al., 2000). The along-shelf mean
flow has its strongest influence on the mid- and outer-shelf (Zhang
et al., 2009a), while it is mainly buoyancy and wind that drives cir-
culation on the inner-shelf (Münchow and Chant, 2000; Tilburg
and Garvine, 2003; Yankovsky, 2003). The Hudson River is a major
source of nutrients, contaminants and other biogeochemical trac-
ers in the NYB (Adams et al., 1998; Howarth et al., 2006) and
numerical ecosystem modeling has proven useful for examining
aspects of biogeochemical cycling in this region (Cahill et al.,
2008; Fennel et al., 2006). To achieve skillful simulation of short
time and space scale biogeochemical events requires quite accu-
rate estimates of the ocean physical state, and improving physical
ocean state estimates for such a purpose is an objective of this
study.

The NYB is one of the most densely observed coastal areas in the
world and has been the target of pioneering deployments of new
observing systems including autonomous underwater gliders
(Schofield et al., 2007) and surface current measuring High-Fre-

quency (HF) radar (Kohut et al., 2006b). In spring 2005 and 2006,
interdisciplinary process studies of the Hudson River plume (the
Lagrangian Transport and Transformation Experiment, LaTTE) were
conducted (Chant et al., 2008a) using observations from satellites,
HF-radar, a fleet of gliders, moorings, surface drifters, and instruments
aboard the R/V Cape Hatteras and R/V Oceanus. Simulations of the
NYB using ROMS (Regional Ocean Model System, http://www.myr-
oms.org) complemented observations in real-time (Foti, 2007).

Observations and models have shown that the path taken by
the Hudson River estuary outflow is unsteady due principally to
wind variability, and that there is a tendency for formation of an
anticyclonic recirculation in the apex of the NYB, especially when
wind is upwelling favorable (Chant et al., 2008b). Comparisons of
long simulations driven by external forcing with LaTTE observa-
tions have exposed some model deficiencies, such as insufficient
eastward penetration of the river plume (Zhang et al., 2010b), that
have been attributed to errors in model initial conditions. Adjust-
ment of the simulated ocean state by data assimilation to produce
a ‘‘best estimate” analysis of ocean conditions during LaTTE is an
objective of this study.

On-going operation of many instrumentation systems on a qua-
si-continuous basis makes the NYB an attractive location to evalu-
ate how advanced observation and modeling capabilities might be
integrated for the purposes of implementing a practical coastal
ocean data assimilation and prediction system.

In this study we used the IS4DVAR system in ROMS, described
comprehensively by Powell et al. (2008) and Broquet et al.
(2009), to assimilate all available observations collected in con-
junction with the spring 2006 LaTTE field program. We describe
a ‘‘pseudo-real-time” DA system, by which we mean a system that
could have operated in real-time had we known then what we
have learned here about practical issues of timeliness and quality
control that must be addressed when assimilating observational
data from the various platforms we used, and configuration of
the IS4DVAR algorithm itself in a shallow inner-shelf region.

Our study considers the improvement to model skill brought
about by IS4DVAR data assimilation, and does not dwell on
detailed nowcast or forecast skill assessment. Accordingly, to min-
imize potentially adverse influences from errors in extended peri-
od atmospheric forecasts, we have used meteorological forcing
that is the concatenation of consecutive 24-h forecast fields. There-
fore, strictly speaking, we do not generate true forecasts beyond
24 h but will nevertheless refer to these as such for convenience.
The simulations are legitimately termed forecasts in the sense that
they make no use of ocean observations in the forecast window.
This retrospective analysis allows us to evaluate, to a certain ex-
tent, the influences of different observation sources on the perfor-
mance of the ocean forecast system. Further evaluation and
optimization of observational strategies using representer-based
methods is explored in the Part II paper (Zhang et al., 2010a) that
accompanies this article.

This paper is organized as follows: Section 2 describes the data
collected in spring 2006 and its quality control prior to assimila-
tion; Section 3 describes the model configuration and Section 4
describes the DA system; Section 5 presents the results; and
Section 6 summarizes the work.
2. Observational data

The 2006 LaTTE field campaign observing the Hudson River
spring freshet was similar to that of spring 2005 described by
Chant et al. (2008a), and was complemented with observations
from HF-radar, gliders, and satellites acquired by the Rutgers
University Coastal Ocean Observation Laboratory (RUCOOL) (Glenn
and Schofield, 2003). Sea Surface Temperature (SST) data from the
Advanced Very High Resolution Radiometer (AVHRR) aboard the
NOAA satellites were spatially averaged to 4 km resolution for
assimilation (e.g. Fig. 6a). Profiles of subsurface temperature and
salinity observed by gliders with a SeaBird CTD were averaged to
1-m vertical resolution. HF-radar data derived from 5 antenna sites
(Fig. 1) were combined into total vectors using the method de-
scribed by Kohut et al. (2006a), and averaged to hourly, 6-km res-
olution values for assimilation (e.g. Fig. 6a). We choose 2.5 m as the
nominal depth of the HF-radar measured currents (Stewart and
Joy, 1974).

The average power spectrum of the HF-radar data (Fig. 2) shows
that tides dominate the surface current. Due to errors in either the
boundary conditions, propagation of tides within the model, or in
the HF-radar measurements themselves, the spatial patterns of
modeled and observed tidal current harmonics differ (e.g. the
comparison of M2 harmonic in Fig. 3). The ROMS DA system
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Fig. 2. Averaged spectrum of HF-Radar-measured surface current. Dash lines
indicate local inertial frequency band and the confidence limit applies to data
within the inertial frequency band.
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implemented at the time of this study does not include the tidal
harmonic boundary forcing as control variables, and therefore can-
not adjust (or ‘‘tune”) these directly to improve the model tidal
solution. If we were to assimilate the 1-hourly interval HF-radar
data directly, systematic errors in the surface velocity due to this
tidal harmonic mismatch could be interpreted by the DA system
as requiring adjustments to the model initial conditions, which is
obviously not what we intend. To avert this potential problem,
we filtered the tidal signal in the HF-radar data and replaced it
with the harmonic tidal signal derived from a control ROMS model
simulation. This merger achieves consistency between the ‘‘modi-
fied observed” tidal currents and the model so that any mismatch
in the tides will not dominate the cost function. By comparing to
results when assimilating the original HF-radar data we verified
that assimilating the merged surface currents gives better velocity
fit and forecast skill (not shown).
Fig. 3. Comparison between HF-radar
Seven moorings (Fig. 1), each with an Acoustic Doppler Current
Profiler (ADCP) and two or three Conductivity/Temperature (CT)
sensors at different depths, recorded data from April to June. Two
surface drifters deployed between 4 and 8 May measured surface
temperature (we did not attempt to use drifters for surface velocity
data given the difficulty discussed above of adequately of account-
ing for the tides). Between 2 and 8 May surveys by the vessels R/V
Cape Hatteras and R/V Oceanus measured temperature, salinity
and velocity from towed undulating CTD and ship mounted ADCP
instruments. All data from the towed undulating vehicle, ADCP,
CTD, CT and drifters were averaged to resolutions of 2 m in the ver-
tical, 5 km horizontally, and 12 min in time prior to assimilation.
This reduced the scales resolved by the data to be comparable to
those represented in the model: the model grid has 2 km horizon-
tal resolution, and the assumed model background error covari-
ance scales were 20 km in the horizontal and 2 m in the vertical.

Fig. 4a indicates data availability from each platform on each
day, and Fig. 4b gives the number of observations of each ocean
state variable on each day. There are 20,000–45,000 observations
each day, with velocity being the most abundant and salinity the
least. More than 60% of the velocity data is surface current from
HF-radar with the rest from ADCP. More than 50% of the tempera-
ture data is satellite SST, about 13% is measured by gliders, and the
remainder by moored and ship-borne CTD. About half of the salin-
ity data is from gliders and half is from moorings and ships.

3. Model configuration

3.1. The Regional Ocean Modeling System

ROMS is a free-surface, hydrostatic, primitive equation ocean
model using terrain-following vertical coordinates. Haidvogel
et al. (2008) present an overview of the model design and
Shchepetkin and McWilliams (1998, 2003, 2005) describe in detail
the ROMS computational kernel. The ROMS Adjoint and Tangent
Linear models were developed by the ROMS Adjoint Group (Moore
et al., 2004), and drivers have been developed that utilize these
observed and modeled M2 tide.



Fig. 4. Types (a) and numbers (b) of observations over the data assimilation period (10 April–5 June, 2006).
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models for Adjoint Sensitivity and Optimal Perturbation analysis
and strong and weak constraint 4DVAR data assimilation (Broquet
et al., 2009; Di Lorenzo et al., 2007; Moore et al., 2004, 2009;
Powell et al., 2008; Zhang et al., 2009b).

3.2. New York Bight and New Jersey inner-shelf configuration

Our ROMS configuration for the NYB is similar to that of Zhang
et al. (2009a). The model domain (Fig. 1) covers the NYB from
south of Delaware Bay to eastern Long Island and includes the
two major rivers in this area, the Hudson and Delaware. Because
of the computational demand of the IS4DVAR system, the horizon-
tal resolution in this study has been decreased from 1 km in Zhang
et al. (2009a) to 2 km, but the vertical resolution of 30 layers is
unchanged.

Initial conditions prior to commencing DA on 5 April 2006 (when
the LaTTE observational program began in earnest) were obtained
from the ‘‘full physics” simulation in Zhang et al. (2009a). In all for-
ward model simulations, Chapman (1985) and Flather (1976) open
boundary conditions are used for sea surface height and the baro-
tropic component of velocity on the model perimeter, respectively.
These conditions impose a remotely-forced along-shelf mean flow
computed from a water-depth/velocity relationship (Lentz, 2008),
and tidal harmonic variability from a regional tidal simulation
(Mukai et al., 2002). Gradient open boundary conditions are used
for 3D velocity and tracers. The Generic Length Scale method k–kl
closure (Umlauf and Burchard, 2003) is used for the vertical mixing;
bottom drag is quadratic (CD = 0.003). In the forward simulations,
air-sea fluxes of momentum and heat are computed using bulk for-
mulae (Fairall et al., 2003) with meteorological conditions from the
North American Mesoscale (NAM) model (Rutledge et al., 2006).
The river discharge data were obtained from USGS Water Data
(http://waterdata.usgs.gov/nwis). Fig. 5 shows the river discharges
and wind at the Hudson River mouth over the DA experiment
period.

In choosing the model configuration and external forcing, care
was taken to avoid introducing model biases relative to observa-
tions. Nevertheless, some biases may remain and will be discussed
later in the paper. The 4DVAR theory assumes that model error is
unbiased and Gaussian, but the extent to which performance of
the 4DVAR system degrades in the presence of biased errors is
unknown.
4. Data assimilation system

4.1. IS4DVAR theory

We summarize briefly here the principles of IS4DVAR data
assimilation for the purpose of highlighting the choices to be made
in a practical coastal application. For a detailed description see
Courtier (1997), Courtier et al. (1994), Powell et al. (2008) and
Weaver et al. (2003).

The ROMS nonlinear forward model can be represented as

@UðtÞ
@t ¼ MðUðtÞÞ þ FðtÞ;

Uð0Þ ¼ Ui;

UðtÞjX ¼ UXðtÞ;

8><
>:

ð1Þ

where M is the model nonlinear operator; U(t) is a state vector
[u v T S f]T comprised of the velocity, temperature, salinity and
sea surface height at all model grid points at time t; F(t) is the exter-
nal forcing; Ui the initial conditions; and UX(t) are boundary con-
ditions along boundary X. We assume the model is ‘‘perfect,” that
is, no explicit account is made for inadequacies in the forward mod-
el in the model-data misfit – this is the so-called strong constraint
method. In DA, the objective is to adjust the control variables (typ-
ically initial conditions, but also potentially boundary conditions
and forcing) to minimize a cost function that comprises the adjust-
ment to the control variables and the mismatch between model and
observations.

In IS4DVAR, we let U0 denote a solution to (1) and assume U0 is
sufficiently close to the true ocean state that the adjustments to
the control variables, ui = dUi for initial conditions, uX(t) = dUX(t)
for boundary conditions, and f(t) = dF(t)) for forcing, will be small
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Fig. 5. River discharges (a) and zonal (b) and meridional (c) components of the wind at the Hudson River mouth over the experiment period.
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and can be described by a linearized model, the Tangent Linear
model,

@uðtÞ
@t ¼ @M

@U

� ���
U0

uðtÞ þ fðtÞ;
uð0Þ ¼ ui;

uðtÞjX ¼ uXðtÞ;

8><
>:

ð2Þ

where u(t) = U(t) �U0(t) is the perturbation state at time t. The
mismatch between the model and observation, d = y � HU0(t), is
then small. Here, H is an operator that samples the nonlinear model
state at the observation locations and times and y is a vector of the
observations. The system can be linearized and the cost function is
now defined as

J ¼ Jo þ Jb; ð3Þ

with

Jo ¼
1
2

XNobs

n¼1

ðHnuðtnÞ � dnÞT O�1ðHnuðtnÞ � dnÞ; ð4Þ

Jb ¼
1
2
uiB

�1
i ui þ

1
2
uXB�1

X uX þ
1
2

fB�1
f f; ð5Þ

where H is linearized H, O is the observational error covariance ma-
trix, Nobs is the number of observations in the analysis interval, and
Bi, BX and Bf are the assumed covariances of errors in initial condi-
tions, boundary conditions and forcing, respectively.

In ROMS IS4DVAR minimization of J is achieved iteratively in a
so-called inner-loop using a Conjugate Gradient algorithm. The
incremental formulation renders the system linear so that J is qua-
dratic and the convergence of iterations is guaranteed. On each
iteration the gradient of J with respect to the control variables, ob-
tained from the Adjoint model forced by the model-observation
mismatch, is used to compute the direction and step size of the
minimum search. Upon convergence of the inner-loop, an outer-
loop reruns the nonlinear forward model to update U0(t) using
the adjusted control variables. In the end, corrected initial condi-
tions, boundary conditions and forcing are obtained.
4.2. Data assimilation system setup

Our IS4DVAR analysis of NYB circulation is for the period 10
April–5 June 2006 coinciding with the availability of in situ obser-
vations during LaTTE. Physical processes in the NYB are somewhat
nonlinear so we limit the duration of the DA analysis window (the
interval over which Jo is evaluated and the iteration on ui per-
formed) to 3 days (Zhang et al., 2009b). In order to provide a fore-
cast every day, incorporate more dynamical connections, yet
constrain the model over the whole DA window, we choose to
overlap DA cycles by advancing the beginning of the DA window
by 1 day from one cycle to the next, thereby creating a two-day
overlap between consecutive cycles. The workflow is as follows:
The first DA cycle starts at 0000 UTC 10 April 2006 with the first
guess of the initial conditions taken from the control forward mod-
el simulation (a 2-month continuous simulation prior to com-
mencing DA). Assimilation of all the observational data within
the 3-day period (0000 UTC 10 April – 0000 UTC 13 April) gives ad-
justed initial conditions for 0000 UTC 10 April from which an 18-
day forward nonlinear model simulation is then launched. The
model solution within the first 3 days is therefore an ‘‘analysis”
result, being a fit to observations made at the same time, while
the outcome for the subsequent 15 days is a forecast. The second
DA cycle starts at 0000 UTC 11 April with the first guess of the ini-
tial conditions now taken from the analysis of the first DA cycle.
Assimilation of observations in the window 0000 UTC 11 April to
0000 UTC 14 April then produces new adjusted initial conditions
for 0000 UTC 11 April. Note that observations made on 11 and
12 April are assimilated in both the first and the second DA cycles.
Another 18-day forward nonlinear model simulation is launched
starting from the Cycle 2 adjusted initial conditions for 0000 UTC
11 April. We repeat this process, advancing 1 day each cycle, until



Table 1
Observational error representation.

Observational
platform

Satellite HF-
radar

Glider Mooring Drifters Shipborne

Velocity (m s�1) – 0.05 – 0.02 – 0.06
Temperature

(�C)
0.4 – 0.4 0.4 0.3 0.6

Salinity – – 0.4 0.4 – 0.6
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the last DA cycle starts at 0000 UTC 3 June 2006. In total there are
55 overlapped cycles.

(Note: The meteorological forcing data set we use is a concate-
nation of the first 24 h of each NCEP NAM forecast cycle, which is
the best product currently available for our regional study. Our
ocean forecast is therefore not strictly a true forecast because
atmospheric observations in the ‘‘future” impact the prediction.
Nevertheless, no ocean observations are utilized during the fore-
cast, and our experiment is a faithful test of how IS4DVAR assimi-
lation of ocean observations improves state estimation and
prediction. The results here are therefore potentially different to
those that would be obtained using true forecast meteorology for
several days in a fully operational sense. Such forcing would almost
certainly decrease the overall system forecast skill, but it does not
follow that our construction of the meteorological forcing will lead
to an over-estimate of the added forecast skill due to ocean data
assimilation to adjust ocean initial conditions.)

At the time this study was conducted the IS4DVAR capability of
ROMS allowed only for adjustments to the model initial conditions.
The last two terms in Eq. (5) are therefore absent here, though it is
certain that errors exist in the external forcing and boundary con-
ditions. Given our relatively short 57-day analysis period and pre-
Fig. 6. Comparison of observed and modeled sea surface
vious studies that show the regional circulation is predominantly
locally forced (Choi and Wilkin, 2007; Zhang et al., 2009a), we do
not expect boundary conditions to play a significant role. Where
local transport dominates the evolution of oceanic tracers (temper-
ature and salinity) initial conditions are appropriate control vari-
ables to adjust to reduce model-observation tracer mismatch.
The adjoint sensitivity analysis of Zhang et al. (2009b) also empha-
sizes that SST in the immediate vicinity of the Hudson River plume
has the greatest contribution to SST anomalies on the New Jersey
coast. However, this argument is not necessarily true for velocity,
as we shall see. The capability to adjust external forcing and
boundary conditions has recently been added to the ROMS 4DVAR
system and will be applied in future studies.

Within each DA cycle, 3 outer-loops and 11 inner-loops are
used. Tests with different numbers of outer-loops and inner-loops
prove this is a practical and effective combination in terms of sys-
tem performance and affordability. Due to the strong nonlineari-
ties embedded in the vertical turbulence closure, this aspect of
the nonlinear forward model is not precisely linearized in the Tan-
gent Linear and Adjoint models. Instead, space and time varying
vertical viscosity and diffusivity coefficients computed in the first
nonlinear model simulation of each cycle (corresponding to
U0(t)) are stored and used by the Tangent Linear and Adjoint mod-
els in that cycle.

4.3. Error statistics

In Eq. (4) the model-observation mismatch is weighted by
observational error covariance. We assume the observations are
independent of each other, and the observational error covariance
matrix O is then diagonal. The error value assigned to each obser-
vation represents the combination of actual instrument accuracy,
temperature and current at 0700 UTC 20 April 2006.
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misrepresentation associated with processes unresolved by the
model or absent from the model physics yet observed by the
instruments (e.g. high frequency internal waves), and model error
caused by inaccuracies in external forces that are not included in
DA control variables (surface forcing and open boundary condi-
tions in this study). While the accuracy of each instrument (CTD,
AVHRR, HF-radar, etc.) is reasonably well known, the specification
of observational error remains somewhat subjective and empirical
because the misrepresentation associated with model resolution
and physics is difficult to quantify a priori. We need to choose er-
rors that realistically represent the extent to which the modeling
system can fit the data; if not the DA cannot converge. The obser-
vational error standard deviations used in this study as listed in
Table 1.

The background error covariance Bi takes into account the inter-
connection between the initial condition adjustment in a given
state variable at neighboring locations (univariate), and between
correlated adjustments in different variables (multi-variate) (Der-
ber and Bouttier, 1999). In 4DVAR it is impossible to explicitly form
Bi given its size (O(106) � O(106) elements in this study), and in-
stead is usually estimated based on an ensemble of model simula-
tions (Li et al., 2008; Parrish and Derber, 1992) or numerical
simulation of diffusion equations (Weaver and Courtier, 2001).
The latter approach is implemented in ROMS (Broquet et al.,
2009; Powell et al., 2008). It separates Bi into a multi-variate bal-
ance operator (Weaver and Courtier, 2001), background error stan-
dard deviations, and a univariate correlation matrix. The correlation
matrix is further separated into horizontal and vertical correlations,
and each of them is inferred by solving a diffusion equation.
Fig. 7. Comparison of glider-measured and modeled temperature and salinity along a gli
in Fig. 1). (For interpretation of the references to color in this figure legend, the reader
The multi-variate component of Bi in ROMS is under develop-
ment and was not used in this study, but this does not imply that
correlations between state variables are all neglected – we hasten
to emphasize that many of the dynamical connections between
variables are embodied in the Tangent Linear and Adjoint models.
The extent to which the neglect of multi-variate interconnections
in the background error covariance might degrade performance
of the DA system is uncertain, and will be quantified in future stud-
ies when we become experienced with applying the balance oper-
ator. The background error standard deviations that scale the
correlation matrix were calculated from a detided 3-month simu-
lation reflecting an assumption that the corrections to the initial
conditions should not exceed the magnitude of typical subtidal
variability. The background error correlation scales we used in this
NYB application are 20 km in the horizontal and 2 m in the vertical,
chosen based on scales typical of observed spatial patterns in the
region and with care not to over-estimate the scales lest we intro-
duce spurious correlations and over-smoothing in the control var-
iable increments.
5. Results

Figs. 6 and 7 show two examples of the DA results. In Fig. 6, sa-
tellite-measured SST and HF-radar-measured surface current at
0700 UTC 20 April 2006 are compared to their equivalent in the
control simulation, to the analysis given by the 10th cycle (3-day
DA window commencing 0000 UTC 19 April) and to the forecast
launched from the 6th cycle (DA window that ended 0000 UTC
der track between 27 and 29 April, 2006 (the red line across the Hudson Shelf Valley
is referred to the web version of this article.)



Fig. 8. Normalized cost functions (a) and cost function gradient norm (b) at each
iteration of all the 55 data assimilation cycles. The normalization is achieved
through dividing the cost functions and cost function gradient norms by their
values at the beginning of each DA cycle. The dashed curves indicate the change of
the cost function in the first DA cycle and the vertical doted lines separate the
outer-loops.
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18 April). SST in the control simulation is clearly too warm every-
where and most of the surface current vectors point to the right of
observed. These model errors are largely removed in the analysis
(Fig. 6c) as is to be expected: the SST bias is absent, the Hudson
River plume sits at the right location, the warm patch along the
New Jersey coast covers the correct area, and most of the surface
current vectors point in the observed direction. The 3-day forecast
(Fig. 6d) has SST and surface velocity closer to the observations
than the control simulation, but the forecast deviates more from
the observations than the analysis, especially the surface current
in the Hudson River plume area.

Between April 27 and 29 a glider deployed in the Hudson Shelf
Valley (its track is shown in Fig. 1) measured temperature and salin-
ity cross-sections that are compared in Fig. 7 to the control simula-
tion, the analysis for the 3-day DA window that commenced at
0000 UTC 27 April, and the forecast launched from the DA that ended
0000 UTC 27 April. The control simulation shows about 1oC surface
warm bias, 1oC subsurface cold bias, and 0.5 salinity bias at all
depths. In the analysis the observed temperature and salinity pat-
terns are largely corrected (again, as expected, since 4DVAR is
matching the solution to these data) except that the subsurface salty
bias in the Hudson Shelf Valley becomes worse. In the 3-day forecast,
large-scale biases are absent, and while details of spatial patterns de-
part from the observations (especially surface salinity) the forecast is
still clearly superior to the control simulation.

These examples demonstrate that the IS4DVAR system imple-
mented here is capable of bringing the model closer to the obser-
vations and giving somewhat improved forecasts compared to a
control simulation without DA. Next, we examine statistical mea-
sures of the model performance; namely, the reduction of model-
observation mismatch in analysis and forecast modes, respectively.

5.1. Model error reduction in analysis periods

Fig. 8 shows the cost function (J, Eq. (4)) and cost function gra-
dient norm, on each iteration, for all 55 cycles. Each curve is nor-
malized by the value at the beginning of the cycle. The cost
function decreases with each iteration of the inner-loop, but surges
at the beginning of an outer-loop because the new nonlinear model
trajectory changes the background state about which the Tangent
Linear approximation is expanded and the previous inner-loop
solution is no longer optimal. As the minimization proceeds, the
surge with each new outer-loop becomes smaller, indicating the
incremental method is converging. Most cycles show about 20%
reduction in cost function after 33 iterations (3 outer-loops times
11 inner-loops), which may seem low but it must be recalled that,
on average, 2/3 of the observations in each cycle have been assim-
ilated by previous cycles because of the overlapping DA windows;
notice that the normalized cost function curve in Fig. 8a for the first
cycle (the dashed curves) – when a full 3 days of new observations
were assimilated for first time – reduces by more than 50% in 33
iterations. The cost function gradient norm in all cycles shows
about 80–90% reduction in 33 iterations which indicates that the
conjugate gradient algorithm has found a minimum. For this appli-
cation, the curves in Fig. 8 and our overall experience suggest there
is little advantage in setting a convergence tolerance as opposed to
simply fixing number of iterations of the outer and inner-loops.

To examine further the reduction of the model-observation mis-
match, we compare all observations to the control simulation and
the analysis for temperature, salinity and velocity (u-component
only, the v-component results are similar) in Fig. 9. The warm bias
in the control simulation has been removed in the analysis and the
scatter around the diagonal has been reduced; RMS temperature er-
ror is reduced by 60%. The lowest salinities in the control run are
much too fresh, and this is corrected in the analysis; RMS salinity er-
ror decreases by 30%. The remaining salinity errors occur mostly for
ship-borne in situ measurements in the estuary where the model
resolution is too coarse to resolve estuarine processes well and
therefore these errors are unsurprising. The RMS error of the velocity
u-component is reduced by 25% through DA, but the scatter remains
large. One reason for this is that the variability-to-span ratio of veloc-
ity is about 1, which is much larger than that of temperature and
salinity. If we assume model error is somewhat proportional to the
natural variability, then the ratio of model error to span (which is
what the scatter in Fig. 9 depicts) would be larger for velocity than
for temperature and salinity. The added role of winds in modeled
velocity error will be discussed in the next section.

Fig. 10 presents time series of the total cost function and the
cost functions of temperature, salinity and velocity computed from
the control simulation, the nonlinear model at the beginning of
each cycle, and the analysis. Because the background cost function,
Jb, is zero at the beginning of the minimization and about one order
smaller than the observational cost function, Jo, at the end of each
cycle, the time series of cost function in Fig. 10 mainly reflects the
change of Jo over the experiment period. Assuming the observa-
tional and background errors are Gaussian and their covariance O
and Bi are described correctly, Chi-squared theory predicts that
the minimum value of the cost function is Nobs/2 with standard
deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nobs=2

p
(Bennett, 2002; Weaver et al., 2003). This theo-

retical predicted minimum is indicated with dashed lines in
Fig. 10a, but the small standard deviations associated are
neglected.

Fig. 10a shows a big drop of the total cost function from the
control simulation to the beginning of each cycle, which is the



Fig. 9. 2-D histogram of the comparison between observed and modeled temperature, salinity, and u-component of the velocity for model before (control simulation) and
after (analysis simulation) data assimilation. The color indicates the log10 of the number of observations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 10. Cost function of the control run, at the beginning of each cycle and of the analysis and the Chi-squared-theory-predicted optimal minimum of cost function of each
cycle.
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Fig. 11. Magnitude of NAM wind error and normalized velocity model-observation
misfit of the control run before and after the wind correction. All misfits are
normalized by the number of corresponding observations assimilated in each cycle.
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accumulated effect of the DA cycles. From the beginning to the end
of the cycles, i.e. from U0 to analysis, there is another drop of the
cost function but to a smaller extent (because, as mentioned previ-
ously, 2/3 of the observations have been assimilated by previous
cycles). For all variables, DA decreases the mismatch, but velocity
mismatch decreases the least. This suggests that much of the
velocity mismatch falls into the null-space of the DA system and
cannot be corrected by adjusting model initial conditions. As we
will see in next subsection, it is, at least partially, due to spatially
coherent errors in the wind forcing. On convergence, the total cost
function for the analysis is generally 2 to 3 times larger than the
optimal minimum according to Chi-squared theory, meaning that
background error covariance was underestimated. This might
result from the neglect of multi-variate components in the back-
ground error covariance. One issue is that repeated assimilation
of data in consecutive overlapped DA cycles might break the inde-
pendence of model and observation errors assumed in the Chi-
squared theory. However, tests with non-overlapped cycles (not
shown) gave slightly larger final cost function values meaning that
the overlapping of cycles does not explain the comparison.

5.2. Effects of wind error

Fig. 10 shows a spike in total cost function around 21 May for
which DA eliminates the contribution due to temperature but
not for velocity. This suggests there are either insufficient data to
constrain the control variables, or the control variable set is incom-
plete and cannot adjust the model trajectory to match the data. The
sizeable HF-radar data set suggests it is unlikely to be the former
problem. Suspecting potential errors in wind forcing, which would
immediately impact surface currents but less directly affect surface
temperature or salinity, we computed the difference between 20-
m wind observed at the National Data Buoy Center Ambrose Tower
(Fig. 1) and the 10 m NCEP NAM wind used to force the model at
that location (Fig. 11). Though this comparison quantifies the wind
errors only in the vicinity of Ambrose Tower, it should be indicative
of the likely magnitude of errors elsewhere. The magnitude of the
wind error averaged over each DA window is plotted in Fig. 11 to-
gether with the velocity part of Jo normalized by the number of
velocity observations (to make it equivalent to mean squared mod-
el-observation error). The daily averaged NAM wind error shows a
corresponding jump around 21 May, and overall the correlation be-
tween wind error and normalized velocity Jo is about 0.62 (signif-
icant at 95% confidence level) suggesting that errors in the wind
forcing likely contribute to the model-observation velocity
mismatch.

To explore this conjecture further, we conducted a forward
model simulation forced with winds corrected, somewhat, through
a simple procedure. We assume the error in NAM wind has a hor-
izontal scale larger than our model domain and add the difference
between NAM-modeled and Ambrose-measured winds to the NAM
winds everywhere in our model domain to obtain an ‘‘improved”
forcing wind field. The normalized observational cost function for
a forward model simulation forced with these modified winds is
compared to the control case in Fig. 11. The simple wind correction
substantially decreases the model-observation misfit in cycles
around 15 April and 21 May.

This wind correction approach is simplistic and impractical for
real-time forecasting. Nevertheless, the exercise clearly demon-
strates the potential value of acquiring improved forecast winds,
or developing better methods of correcting the wind. A natural ap-
proach to this in IS4DVAR is to include surface forcing in the con-
trol variables of the DA system, and this is the subject of work to be
reported in a future publication.

We make one further comment: Though the spikes in the veloc-
ity mismatch on 21 May remain (Fig. 10d), the magnitude has been
substantially reduced. This means that the IS4DVAR system has
been able, by adjustment of the model initial conditions (the only
control variables here), to reduce some of the mismatch that is pre-
sumably due to the wind error. Since the DA system cannot differ-
entiate between the sources of the velocity mismatch, this
potentially degrades the performance of the system, especially
with respect to velocity forecast skill, and we will return to this is-
sue in the next section.

5.3. Forecast skill

A primary objective of our study is development of a system
suited to practical real-time ocean forecasting, so we present in
Fig. 12 a statistical measure of the skill of the DA system for each
variable. The skill is defined as

S ¼ 1� RMSafterDA

RMSbeforeDA
; ð6Þ

where RMS is the root-mean-square of model-observation mis-
match weighted by observational error, which is equivalent to the
square root of Jo. Note that ocean observations in the forecast win-
dow are not yet assimilated so they are independent data. With this
definition, any skill value greater than zero represents an improve-
ment of the model performance, and the maximum possible skill is
one. Note that with this definition a skill of zero would not indicate
that the forecast itself is of no value, only that DA did not improve it.

As previously noted, a caveat here is that forecasts beyond 24 h
do not use true forecast meteorology. But what we examine is the
forecast improvement brought about by ocean DA, not details of the
overall forecast skill which would certainly decline with long term
15-day forecast atmospheric forcing.

Skill was computed for each day of each analysis and forecast
window for all 55 cycles, and the ensembles of 1-day, 2-day, etc.
forecasts were averaged. The ensemble average and 95% confi-
dence interval for each analysis and forecast day are plotted in
Fig. 12. The skill of the DA system that assimilates all available
observations is denoted by the black curves. In order to diagnose
the effect of different data sets, we formed three other DA systems
in which we individually withdrew from the assimilation the



Fig. 12. Ensemble average of the skill of different DA systems over analysis and forecast periods for individual forecast variables. Vertical bars on symbols indicate 95%
confidence intervals. Vertical dashed lines denote the boundary between analysis window and forecast window.
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HF-radar-measured velocity data, glider-measured temperature
and salinity data, and satellite-measured SST data. To clearly dis-
tinguish these four DA systems we denote them All-data, No-HF-
radar, No-glider, and No-SST, respectively. The skill values in
Fig. 12 were computed from the comparison of each modeling sys-
tem to all observational data irrespective of which data were with-
drawn from the DA.

Fig. 12a shows that model-observation mismatch in tempera-
ture during the analysis period is dramatically reduced (about
70% for the All-data, No-HF-radar and No-glider systems, and
40% for the No-SST system) and temperature forecast is substan-
tially improved in all DA systems. The All-data, No-HF-radar and
No-glider systems have comparable skill for temperature – starting
from 0.6 at 1 day and gradually decreasing to 0 at about 14 days
into the forecast window. The No-SST system has substantially less
skill – starting at 0.4 and dropping to 0 at 5 days into the forecast
window.

To further diagnose the impact of different data, we separately
consider temperature skill evaluated in terms of glider-only obser-
vations (throughout the full water column) and satellite SST (sur-
face only) as shown in Fig. 13. Skill for subsurface temperature
for the All-data system and No-HF-radar systems is 0.5 at 1 day
and drops to 0 at 7 days. Evidently, skill is better beyond 8 days
if surface velocity from HF-radar is not assimilated. When glider
observations are withdrawn, the subsurface temperature skill in
the analysis window is poor, but the model subsequently gains
some skill in the first forecast week. This gain is presumably caused
by the information in assimilated SST propagating downward
through the water column due to modeled physics. That SST data
add subsurface skill is demonstrated by noting that when SST data
are withdrawn (green1 line in Fig. 13a) the subsurface temperature
1 For interpretation of color in Fig. 13, the reader is referred to the web version of
this article.
skill drops for the entire forecast period compared to the All-data
case.

In Fig. 13b, the All-data, No-HF-radar, and No-glider systems
show the same performance at forecasting SST, with skill exceed-
ing 0.4 for the entire forecast period. When satellite-measured
SST data are not assimilated, the DA system adds no value to fore-
casting SST at all. This suggests that SST initial conditions have an
overwhelming influence on the overall modeled SST pattern in the
area, with subsurface temperature and other variables exerting rel-
atively little influence.

Fig. 13b also gives the skill of a ‘‘forecast” produced by simply
persisting in time a set of satellite SST observations, which is the
only persistence skill we can practically calculate given the avail-
able data set. Persistence skill is a commonly used standard of ref-
erence for measuring the value of a (complicated and expensive)
model-based forecast system (Di Lorenzo et al., 2007; Murphy,
1992). The persistence skill starts around 0.6 for 1 day and quickly
approaches zero after 3 days into the forecast window. The IS4D-
VAR system performs much better than persistence, indicating
the value the dynamical model has for propagating corrected the
initial conditions forward in time.

The relative performance of the DA systems with respect to
salinity is largely similar to temperature, but with some differ-
ences. Fig. 12b shows that the All-data DA system achieves a salin-
ity model-observation skill of 0.4 during analysis, which is
substantially less than the skill for temperature; salinity skill is
about 0.3 at 1 day and about 0.1 at 3 days into forecast. Thereafter,
skill stays around 0.1. Comparing the different DA systems we see
that assimilating glider-measured subsurface data improves salin-
ity skill for the entire period, assimilating SST data actually de-
grades the salinity skill, and assimilating surface velocity data
has minimal impact on salinity. The adverse impact that SST assim-
ilation has on the salinity forecast suggests that false dynamical
connections between SST and salinity either exist in the back-
ground error covariance or are generated by tangent linear and ad-
joint models. The former would at first seem unlikely since there is



Fig. 13. Ensemble average skill of different DA systems over analysis and forecast
periods for (a) glider-measured temperature and (b) satellite-measured SST.
Vertical bars indicate 95% confidence. Vertical dashed lines denote the boundary
between analysis window and forecast window.
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no multi-variate component in the background error covariance of
this study, though the application of a univariate covariance could
conceivably ‘‘unbalance” the solution. The latter might result from
breakdown of the linearity assumption of IS4DVAR theory. If this
were true, shortening the DA window would be desirable. How-
ever, tests with 2-day DA window gave degraded overall forecast
skills (not shown), and the 3-day DA window is preferred in this
application. The exact reason for the degradation is unknown at
this time. On balance, diversity in the data sources is to be pre-
ferred. We note that the adjoint sensitivity analysis of Zhang
et al. (2009b) showed temperature and salinity interact in subtle
ways in this coastal circulation regime because they affect density
stratification and therefore baroclinic pressure gradients and verti-
cal mixing. Through the adjoint, IS4DVAR modifies not only the
tracer conditions upstream but also the transport dynamics. Hav-
ing a variety of data types for assimilation helps constrain both
influences, decreasing the null-space of the DA system which
might otherwise impose increments to control variables that sub-
sequently have a negative impact on the forecast.

Fig. 12c and d shows that the All-data system achieves a veloc-
ity skill of about 0.45 in the analysis window but has velocity skill
above 0 only for 2–3 days into the forecast. A more rapid decline in
skill for velocity compared to temperature and salinity is expected;
autocorrelation timescales for velocity are always less than those
for tracers indicating they are inherently less predictable. Limits
to the velocity skill will also result from the errors in wind forcing
noted in the previous subsection.

The similarity in velocity skill in the All-data, No-glider, and No-
SST systems suggests that assimilating temperature and salinity
data contributes little to the improvement of the model’s velocity
prediction. There are a number of possible reasons for this, the first
being the incomplete interconnection between variables in the
background error covariance, as mentioned previously. A second
possibility is that errors in the winds quickly adversely impact
the modeled surface current, which has strong inertial response
to wind (evident in the power spectrum, Fig. 2). A third consider-
ation is simply that on this broad, shallow shelf, surface velocity
variability is not determined particularly strongly by the geo-
strophic thermal wind associated with horizontal density gradients
set by temperature and salinity. The difference between All-data
and No-HF-radar systems, however, shows that assimilating HF-ra-
dar-measured surface currents does improve velocity predictabil-
ity by 1–2 days.

To examine changes in skill over time, we plot the ratios after
DA (the All-data system) to before DA of RMS error and cross-cor-
relation (CC) error (1�CC) for different variables (Fig. 14). Both
RMS and CC are obtained from the comparison of all available
observational data on a given day to the relevant model realization.
The results are plotted as a function of start date for each forecast
cycle (abscissa), and days into the forecast window (ordinate). Each
45� tilted line therefore depicts a single DA cycle, all values with
ordinate less than 0 are within analysis periods, and all values at
the same abscissa value represent different forecasts of the same
date. For both quantities plotted, a ratio less than 1 means DA im-
proves the model. In these plots, values consistently greater than 1
on the same date mean that date was never forecast well regard-
less of when the forecast was launched, whereas values greater
than 1 following a 45� line mean that forecast cycle always gave
poor results.

The ratios of RMS error and CC error for temperature are much
smaller than 1 in the analysis window for almost all cycles. In the
forecasts, the RMS error ratio remains less than 1 for most of the
cycles except several days around 9 May and 3 June. The CC error
shows similar performance but is a more critical skill metric and
shows ratio greater than 1 more frequently. DA decreases RMS er-
ror for salinity for most of the time, though the period around 25
April is notably poor. No forecast launched prior to 25 April was
able to produce a salinity prediction for 24–26 April that was bet-
ter than the no-assimilation case, the salinity analysis itself for 24–
26 April is poor, and the forecast launched from that analysis is not
skillful. April 25 is a time of peak in Hudson River discharge (Fig. 5)
but this does not itself explain the lackluster model performance,
because from previous studies (Zhang et al., 2009a) we expect
the model to have some skill at simulating the river plume
trajectory.

The occurrence of high ratios for RMS and CC error in salinity
during some periods is a concern because it indicates the DA sys-
tem might degrade the forecast compared to a conventional no-
assimilation forward model, but interpretation may be affected
by the sampling distribution for salinity which is not extensive,
and is quite heterogeneous. Consider that in situ observations in-
clude ship-towed undulating CTD data during 2–8 May (Fig. 4) –
the time period when salinity appears to be consistently poorly
forecast as judged by the CC error (Fig. 14d). The vessel cruise track
(Fig. 1) samples regions where salinity is not observed by any other
instruments during the experiment, and it is plausible that the
introduction of these data to the forecast verification data set
beginning 2 May reveals forecast errors that were previously



Fig. 14. Ratios after data assimilation to before data assimilation of RMS error and cross-correlation error (1�CC) at each day of all cycles for the DA system assimilating all
observational data. Thick white lines are contours of value 1.
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unknown because of a lack of data to identify them. Inspection of
Fig. 14d suggests that after the towed CTD data have been incorpo-
rated by the DA analysis during 2–8 May, the forecasts launched
thereafter do rather better. Thus the irregular space–time sampling
pattern for salinity may be producing a misleading forecast skill
assessment here if much of the data falls into the null-space of
the DA system, i.e. where the unavailability of observations means
the analysis step has had no opportunity to improve the model
state and subsequent forecasts. We cannot rigorously test this con-
jecture until a more extensive in situ observation network is
available.

For the velocity components, the RMS and CC error ratios are
less than 1 in all analysis cycles, but rather quickly rise in the fore-
cast period, consistent with the results above for overall forecast
skill. The error ratios do not reach the extremes noted during some
cycles for salinity, but this may simply indicate that when the
model loses velocity forecast skill the error variances with and
without assimilation are comparable and the ratio remains of order
unity. The sampling distribution for HF-radar is more extensive
and consistent than for SST and gliders.
6. Summary and conclusions

As part of a long-term project building an integrated observa-
tion and modeling system for the New York Bight for the purposes
of coastal ocean prediction and observing system design, this study
has evaluated four-dimensional variational data assimilation using
ROMS in a realistic and pseudo real-time setup. In an accompany-
ing article (Part II) we describe further results regarding observing
system evaluation and design.

Here we assimilated all available observations of temperature,
salinity and velocity collected by a variety of platforms in spring
2006 during a campaign of field observation targeting the Hudson
River plume as it flows into the New York Bight and is dispersed
across the New Jersey inner-shelf. After quality control, the
observations were binned or averaged to resolutions comparable
to model spatial scales. Errors in the observations were assumed
to be independent, and an error standard deviation was
assigned to each observation according to instrument accuracy,
model representation of observed physical processes, and the con-
vergence of the DA system. ROMS IS4DVAR was applied with a 3-
day DA analysis window in an overlapped cycling system to adjust
initial conditions for a new forecast every day. This mode of imple-
mentation is standard practice in Numerical Weather Prediction
and represents a practical approach to formulating a real-time
ocean forecast system.

Including only the initial conditions in the control variables
somewhat limits the ability of the DA system to fit the observa-
tions since some of the model-observation mismatch will be due
to errors in other factors such as the surface and boundary forcing.
This issue can be examined in future studies given the recent
extension of ROMS IS4DVAR capabilities to include additional con-
trol variables.

The background error covariance that is an important compo-
nent of IS4DVAR was assumed univariate with 20 km horizontal
and 2 m vertical decorrelation scales. While the adjoint model en-
forces dynamical connections between model variables, the



132 W.G. Zhang et al. / Ocean Modelling 35 (2010) 119–133
univariate background error covariance may downplay these
connections in generating the increments to the initial conditions.
This could potentially degrade the performance of the DA system.
Multivariate background error covariance terms have been added
recently to ROMS IS4DVAR but under the assumption of approxi-
mate geostrophic dynamics and it is uncertain whether this ade-
quately represents correlations on a broad, shallow continental
shelf with appreciable high frequency variability.

System performance was evaluated by examining model-obser-
vation mismatch in the analysis and forecast periods. In the analy-
sis, the reduction in model-data mismatch over all 55 cycles is
about 60% for temperature, 30% for salinity and 25% for velocity.
The cost function minimum attained is about 2–3 times larger than
the optimum expected from Chi-squared theory, which may stem
from the observational error covariance matrix being assumed
diagonal, or the limitations on control variables and background
covariance noted above.

A correlation was found between errors in wind forcing and
model-observation mismatch in velocity, suggesting that improved
wind forcing might enhance the skill of the forecast system. Since
surface forcing is not among the control variables of the data
assimilation it is therefore assumed to be ‘‘true”, and the DA sys-
tem treats surface velocity mismatch due to forcing errors as
‘‘observational error” when it is really part of model error. This
‘‘observational error” would have large spatial correlation scales
inherited from the wind patterns. This result highlights the likely
value of adding surface forcing to the control variables of the DA
in coastal prediction systems, especially if skilful surface velocity
forecasts are desired.

The DA system adds skill in the forecast for about 15 days for
temperature and salinity and 2–3 days for velocity. Withdrawing
selected subsets of the observations reveal the effects different
data sets have on the skill. Assimilating satellite-measured SST
was shown to improve not only the surface temperature forecast
but also the forecast of subsurface temperature. However, satellite
SST assimilation evidently somewhat impairs the improvement of
salinity forecast. Assimilating glider subsurface measurements sig-
nificantly improves the salinity forecast but has little effect on the
SST forecast. HF-radar surface current data extends, by 1–2 days,
the time period for which the velocity forecast is improved, even
with the errors in the wind forcing. Assimilating HF-radar currents
somewhat impairs the forecast of subsurface temperature. The
degradation of the skill of some variables by assimilating other
variables may result from deficiencies in the background error
covariance, over-correction of the initial condition, or limitations
in the nonlinear model itself. Future studies with more sophisti-
cated background error covariance and an expanded control vari-
able set will address these issues.

The meteorological forcing we use in this study is a concatena-
tion of the first 24 h of each NAM forecast cycle and is presumably
superior to the true 72-h forecast in a real-time system. Therefore,
the results presented here provide an upper bound for the perfor-
mance of a real-time ocean prediction system if the same machin-
ery and setup were used operationally.

This study demonstrates that ROMS IS4DVAR data assimilation
has the capability to use a large and diverse set of observations of
the type increasingly available from practical coastal ocean observ-
ing systems, reduce model-observation mismatch in the analysis
period, and subsequently provide improved forecasts for 2–15 days
depending on the forecast variable. It also reveals some of the prac-
ticalities of numerical ocean prediction in real-time with data
assimilation: (i) preprocessing of the observational data must be
conducted in a timely manner and in a way consistent with model
resolution and assumptions made about observational error, (ii)
the meteorological conditions used to force ocean model ought
to be as accurate as possible, especially for better prediction of cur-
rent, and (iii) the choice of some of the parameters in the data
assimilation system, such as observational error standard devia-
tions, background error decorrelation scales and standard devia-
tions should be based on a thorough understanding of the local
physics and the model used in the data assimilation, while the
choice of model resolution and number of inner and outer-loops,
will be dictated by the targeted oceanic processes and available
computational resources.

The analysis here provides some general guidelines on the de-
sign of oceanic observing systems, which we consider further
and from a different prospective in the Part II paper that follows.
The spatial scale of the errors in model and observations should
be taken into account when considering the spacing of the obser-
vations. Although observations on scales smaller than those of
modeled and observational errors provide detailed information
about ocean physics, they are of little merit for data assimilation.
Given limited resources, diversity in observed variables and large
and stable coverage of observation in space ought to be empha-
sized because these both diminish the null-space and bolster the
skill of the data assimilation system.
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