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Abstract

Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhance-
ment in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly
review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-fol-
lowing numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal
averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers;
redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation
performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of
quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoy-
ancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations,
enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less dif-
fusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data
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assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-pur-
pose regional ocean prediction systems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The modeling of variability within the marine environment is essential for societal concerns that span the
entire space/time spectrum. Examples include the prediction of estuarine and coastal ocean processes (circu-
lation, turbulent mixing, and the transport of sediment) on time scales of minutes to days, studies of the oce-
anic response to global climate change (sea ice growth/retreat, sea level rise, carbon cycling) on interannual to
decadal time scales, as well as numerous associated issues related to navigation, fisheries, security and health.
Although modeling systems designed to deal with these problems will inevitably take a variety of forms, the
development and demonstration of ocean modeling systems capable of broad geographic application is
desirable.

Any broadly portable marine modeling system will require significant dynamical complexity, however. In
addition to the underlying hydro-dynamical engine – responsible for determining sea level height, and the
three-dimensional circulation and transport of momentum, temperature and salt – application-specific sub-
models are required for, e.g., turbulent mixing; sediment resuspension, transport and deposition; sea ice
thermo/dynamics; and in situ biogeochemical responses. These requirements in turn constrain the numerical
solution procedures to be highly flexible, robust and computationally efficient.

Historically, ocean circulation models were developed for particular classes of applications (climate mod-
eling, coastal prediction, etc.) and made specific choices as deemed best (at that time) for such considerations
as vertical coordinate treatment and horizontal grid representation [1]. Recently, several of these classes of
ocean models have been enriched with more general algorithmic options to allow a broader range of effective
application. We review one such model here.

The Regional Ocean Modeling System (ROMS) benefits from a lengthy history of development within the
terrain-following ocean modeling community (e.g. [2–4]). ROMS is maintained and applied by a community
of users, now numbering in the many hundreds, who in turn have supplied key enhancements in the dynam-
ical, geochemical and algorithmic areas mentioned further below. The result of this synergistic interaction has
been the emergence of a truly multi-purpose marine modeling system having demonstrable skill across a vari-
ety of space/time scales and problem classes.

The purpose of this review is threefold. First, we provide a description of the formulation of the ROMS
dynamical core and several of its important component sub-models. Second, we review the combination of
novel algorithmic treatments that together allow effective application of ROMS across a variety of geograph-
ical and dynamical environments. Lastly, we note recent examples of quantitative skill assessment in four dis-
tinctive oceanic settings. Further information is available in the cited literature, as well as at the ROMS
community web site [5].

2. The ROMS dynamical core, turbulence closures and selected sub-models

2.1. Hydrodynamic core

ROMS is a member of a general class of three-dimensional, free-surface, terrain-following numerical mod-
els that solve the Reynolds-averaged Navier–Stokes equations using the hydrostatic and Boussinesq assump-
tions [6,7]. The governing dynamical equations – in flux form, Cartesian horizontal coordinates and sigma
vertical coordinates – take the traditional form:
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Here u, v, and X are the components of velocity in the horizontal (x and y) and vertical (scaled sigma coor-
dinate, s) directions respectively; f is the wave-averaged free-surface elevation; h is the depth of the sea floor
below mean sea level; Hz is a vertical stretching factor; and f is the Coriolis parameter. An over-bar represents
a time average, and a prime ( 0) represents turbulent fluctuations. Pressure is p; q and q0 are total and reference
densities; g is the acceleration due to gravity; m and mh are molecular viscosity and diffusivity; C represents a
tracer quantity (for example, salt, temperature, and suspended-sediment); Csource are tracer source/sink terms.
Finally, a function ½q ¼ f ðC; pÞ� is required to specify the equation of state.

These equations are closed by parameterizing the Reynolds stresses and turbulent tracer fluxes as:
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where KM is the eddy viscosity for momentum and KH is the eddy diffusivity for tracers. This results in the
standard (harmonic) form for the vertical viscous/diffusive terms. Analogous operators may be added to
represent sub-gridscale mixing in the horizontal, although they will not be used in many of the applications
reviewed below (see Section 3.7). The horizontal Cartesian coordinates ðx; yÞ may also be replaced by a
more general curvilinear coordinate (n,g), in which case additional metric terms appear in these equations
(see [6]).

2.2. Turbulence closures

In typical regional applications, the ROMS equation set is solved on a computational grid whose spacing is
too large to adequately resolve small-scale turbulent processes at the dissipation level. Therefore these sub-
gridscale processes for vertical mixing of momentum (eddy viscosity KM) and mass (eddy diffusivity KH) must
be parameterized using a turbulence closure model. ROMS provides five methods for turbulence closure: (i) by
user-defined analytical expressions for KH and KM; (ii) Brunt-Vaisala frequency mixing, in which the level of
mixing is determined based upon the stability frequency; and by (iii) the K-profile parameterization, (iv) the
Mellor–Yamada Level 2.5, and (v) the Generic Length Scale methods. The K-profile parameterization (KPP) is
based on Monin–Obukov similarity theory and provides an estimate of the vertical mixing with both local and
non-local sources. The closure scheme is based on the boundary-layer formulation presented in [8], and has
been expanded to include both surface and bottom boundary layers in [9]. The Mellor–Yamada level 2.5

(MY25) scheme is one of a hierarchy of closures proposed in [10]. The method is a two-equation model in
which the turbulent kinetic energy and length scale are used to quantify mixing rates. The implementation
of the method in ROMS is also described in [9]. Finally, the Generic Length Scale (GLS) approach [11] is a
generalized two-equation model that takes advantage of the similarities among several two-equation turbu-
lence closure models that have been used for turbulence modeling. These include the Mellor–Yamada Level
2.5, the k–e model [12], and the k–x (where omega is a turbulence frequency). The GLS formulation imple-
mented in ROMS is described in [13].
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2.3. Bottom boundary layer (BBL) dynamics

Bottom boundary layer dynamics determine the stress exerted on the flow by the bottom, which enters the
Reynolds-averaged Navier–Stokes equations as boundary conditions for momentum. Likewise, treatment of
the BBL is important for the transport of sediment, because bottom stress determines the transport rate for
bedload and the resuspension rate for suspended sediment. ROMS implements either of two sub-models for
representing BBL processes: (i) simple drag-coefficient expressions, or (ii) more complex formulations that rep-
resent the interactions of wave and currents over a moveable bed. The drag-coefficient methods implement for-
mulae for linear bottom friction, quadratic bottom friction, or a logarithmic profile. The more complex
methods implement a few of the many wave-current BBL models, and couple them with calculations of bottom
roughness based on bed properties. In particular, ROMS offers three alternative subroutines that implement
somewhat different combinations of algorithms for the wave-current interactions and moveable bed rough-
ness. One is based on the wave-current algorithm of [14] and the ripple geometry and moveable bed roughness
of [15]. The second subroutine uses the efficient wave-current BBL computations developed by [16] in combi-
nation with sediment and bedform roughness estimates of [17–19]. The third subroutine implements either the
wave-current BBL model of [20] or that of [14] along with moveable bed routines proposed by [21].

2.4. Ecosystem modules

ROMS offers a range of ecosystem sub-models. In order of increasing ecological complexity these include
an NPZD-type model, a Fasham-type model, a two-phytoplankton-class model, and a multiple-phytoplank-
ton-class model. The NPZD-type model has four state variables representing a limiting nutrient (most com-
monly inorganic nitrogen), phytoplankton, zooplankton and detritus, all of which are measured in units of
the limiting nutrient. The NPZD version available in ROMS is coded based on [22]. The Fasham-type model

is a modified version of Fasham’s model [23]. In the ROMS implementation of this model the inorganic nitro-
gen species nitrate and ammonium are treated as separate state variables, chlorophyll is included as a prog-
nostic variable in addition to phytoplankton biomass, and two size-classes of detritus are distinguished to
allow for different settling rates [24]. The two-phytoplankton-class model differs from the Fasham-type model
by the presence of two phytoplankton groups, one representing larger diatomaceous phytoplankton and one
representing small phytoplankton, and the inclusion of silicic acid as an additional nutrient. A further differ-
ence lies in the explicit characterization of internal nitrogen, carbon and, in the case of diatoms and large detri-
tus, silica concentrations within the plankton and detrital pools allowing time-evolving variability in the
elemental composition of different functional groups. This model is described in detail in [25]. The most com-
plex of the ROMS suite of ecosystem models is the multiple-phytoplankton-class ECOSIM model [26]. It explic-
itly represents four groups of phytoplankton including their internal carbon and nitrogen concentrations and
dissolved organic matter; however, it does not explicitly include zooplankton. All of these models focus on the
lower trophic levels of the ecosystem which are assumed to be described reasonably well by Eulerian concen-
trations. Characteristics such as individual behavior and the capacity of some organisms to move against the
currents are assumed to be negligible in these models. Individual-based models that include such behaviors are
under development [27].

2.5. Sea ice

The sea ice component of ROMS is a combination of the elastic–viscous-plastic rheology and simple one-
layer ice and snow thermodynamics with a molecular sublayer under the ice. It is tightly coupled, having the
same grid (Arakawa-C) and timestep as the ocean and sharing the same parallel coding structure for use with
MPI or OpenMP. A description of the implementation for the Barents and Norwegian Seas is given in [28].
The ice dynamics are based upon an elastic–viscous-plastic (EVP) rheology after [29,30]. The EVP scheme is
based on a time-splitting approach whereby short elastic time steps are used to regularize the solution when
the ice exhibits nearly rigid behavior. Because the time discretization uses explicit time-stepping, the ice
dynamics are readily parallelizable and thus computationally efficient. Employing linearization of viscosities
about ice velocities at every elastic (short) time step, as recommended by [30], has the desirable property of
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maintaining the ice internal stress state on or in the plastic yield curve. That is, the ice deforms as a plastic
material unless it is in a rigid state. Another desirable property of this linearization is that the EVP ice dynam-
ics are found to provide a good transient response to rapidly varying winds as well as to inertial and tidal
dynamics, particularly in the marginal ice zone. The ice thermodynamics are based on those of [31,32].
Two ice layers and a single snow layer are used in solving the heat conduction equation. The snow layer pos-
sesses no heat content, but is, in effect, an insulating layer. Surface melt ponds are included in the ice thermo-
dynamics. A molecular sub-layer [31] separates the bottom of the ice cover from the upper ocean. The
inclusion of the molecular sub-layer was found to produce much more realistic freezing and melting rates than
if the ice-ocean heat flux is based purely on the ice bottom to upper ocean temperature difference. Ice thickness
distribution is improved by including the transport of ice enthalpy, or internal ice heat content, in determining
the internal ice temperature.

3. Discretization and numerical algorithms

The ROMS computational kernel utilizes consistent temporal averaging of the barotropic mode to guaran-
tee both exact conservation and constancy preservation properties for tracers and therefore more accurately
resolves barotropic processes, while preventing aliasing of unresolved barotropic signals into the slow baro-
clinic motions (see Sections 3.3 and 3.4). Accuracy of the mode-splitting is further enhanced with redefined
barotropic pressure-gradient terms to account for the local variations in the density field (i.e., the pressure-gra-
dient truncation error that has previously plagued terrain-following coordinate models is greatly reduced)
without sacrificing the efficiency of the split-explicit formulation (Section 3.5). Vertical interpolation is per-
formed using either centered fourth-order schemes or an interpolation based on conservative parabolic splines.
The combination of moderate-order spatial approximations, quasi-monotone advection operators (Section
3.7), and enhanced conservation properties produces both more robust and accurate, and less diffusive, solu-
tions than those produced in earlier terrain-following ocean models.

Shchepetkin and McWilliams describe the algorithms that comprise the ROMS computational kernel in
[7,33,34]. The following brief summary is extracted from these earlier works, and the reader is referred to them
for the complete details.

3.1. Generalized topography-following coordinate

In a topography-following vertical coordinate system there is a transformation,

z ¼ zðx; y; rÞ; ð7Þ
where z is the Cartesian height and r is the vertical distance from the surface measured as the fraction of the
local water column thickness; i.e., �1 6 r 6 0, where r = 0 corresponds to the free surface, z = f, and r = � 1
corresponds to the oceanic bottom, z = � h(x,y). In the case of the classical r-coordinate, (7) reduces to

z ¼ r � hðx; yÞ: ð8Þ

This may be combined with nonlinear stretching, S(r),

zðx; y; rÞ ¼ SðrÞ � hðx; yÞ ð9Þ
and further generalized into the S-coordinate of [4] which in essence behaves like Eq. (8) in shallow regions
and Eq. (9) in the deep ocean.

3.2. Spatial discretization

In the horizontal ðx; yÞ, the state variables are arranged as shown in Fig. 1; this is equivalent to the well
known Arakawa ‘‘C’’ grid. Except where noted otherwise below (e.g., Section 3.7), a centered, second-order
finite difference approximation is adopted in the horizontal.
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Discretization of the vertical coordinate introduces a set of coordinate surfaces,
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n o
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As a result, the perturbed grid-box height Dzk � zkþ1
2
� zk�1

2
is related to the unperturbed height

Dzð0Þk � zð0Þ
kþ1
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� zð0Þ
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according to

Dzk ¼ Dzð0Þk 1þ f
h

� �
; ð12Þ

Fig. 1. Upper: horizontal stencil of the Arakawa C grid. Lower: a vertical section of the ROMS grid showing placement of variables.
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where the multiplier (1 + f/h) is independent of the vertical coordinate. One consequence of (12) is the fact
that vertical mass fluxes generated by a purely barotropic motion vanish identically at every interface, zkþ1

2
.

3.3. Integral conservation and constancy preservation for tracers

Combining the adiabatic tracer equation in advective form,

oq
ot
þ ðu � rÞq ¼ 0; ð13Þ

with the statement of non-divergence of the vector velocity field,

ðr � uÞ ¼ 0; ð14Þ
the tracer equation in conservation form becomes

oq
ot
þr � ðuqÞ ¼ 0: ð15Þ

As a consequence of the flux form of the tracer equations, if a tracer is spatially uniform at the initial time, it
remains so regardless of the velocity field. On the other hand, as a consequence of (15), the volume integral of
the tracer concentration is conserved in the absence of incoming and outgoing fluxes across the domain
boundary. The continuity equation (14) provides the compatibility condition between these two properties.

The discretization of (15) may be obtained using a finite-volume discretization,
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where qi,j,k is understood to be a volume-averaged concentration over the grid-box DVi,j,k,

qi;j;k ¼
1

DV i;j;k

Z
DV n

i;j;k

qdV : ð17Þ

The ~qiþ1
2;j;k

are the interfacial values of tracer concentration. Uiþ1
2;j;k

, V i;jþ1
2;k

, and W i;j;kþ1
2

are volumetric fluxes in
the two horizontal and vertical directions. These are defined as velocity components multiplied by the contact
area between two adjacent grid boxes,

U iþ1
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where Dziþ1
2;j;k

, Dgiþ1
2;j

, and Dzi;jþ1
2;k

, Dni;jþ1
2

are vertical and horizontal measures of the corresponding grid box

interfaces (Dn, Dg may be non-uniform in the case of curvilinear horizontal coordinates). The superscripts
n + 1 and n denote new and old time levels. The time step for the flux variables in (16) is not specified yet,
but must be effectively at nþ 1=2 to achieve second-order temporal accuracy. However, the flux form by itself
guarantees exact conservation of the global volume integral of the advected quantity as long as there is no net
flux across the domain boundary.

Setting qi,j,k ” 1 in (16) yields the discretized continuity equation,

DV nþ1
i;j;k ¼ DV n

i;j;k � Dt � Uiþ1
2;j;k
� U i�1

2;j;k
þ V i;jþ1

2;k
� V i;j�1

2;k
� W i;j;kþ1

2
þ W i;j;k�1

2

h i
: ð19Þ

Once (19) holds, the conservative form of the discrete tracer Eq. (16) also has the property of constancy pres-
ervation in addition to global content conservation.

In a hydrostatic model, the discrete continuity Eq. (19) is needed to compute vertical velocity rather than
grid-box volume DV nþ1

i;j;k . (The latter is entirely controlled by change of f via (12).) Hence,
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W i;j;12
¼ 0; at the sea floor; and ð20Þ
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for all k = 1,2, . . . ,N which defines the meaning of W i;j;kþ1
2

as a finite-volume flux across the moving grid-box
interface zi;j;kþ1

2
. Vertical summation of (19) for different k leads to the equation for the free surface,
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where DAi,j is the horizontal area of the grid box i, j;
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¼
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are vertically integrated (barotropic) volume fluxes; and we have used the identity

ðfi;j þ hi;jÞ � DAi;j �
XN

k¼1

DV i;j;k; ð24Þ

where hi,j is independent of time. Setting k = N in (23), consistency with (22)–(24) results in

W i;j;Nþ1
2
¼ 0; ð25Þ

as required by the kinematic boundary condition at the free surface.
Thus far we have assumed that the time step and time-stepping algorithm for the tracer (16) and for f (22)

are the same. This would be the case if the barotropic and baroclinic components were advanced using the
same small time step dictated by the stability criterion for the barotropic mode. In a split-explicit, free-surface
model, the equation for free-surface (22) and the vertically integrated (2D) momenta are advanced using a
much smaller time step than the tracer equations. Each baroclinic time step starts with computation of the
right hand side of the 3D momentum equations. The right-hand-side components are integrated vertically
to provide forcing terms for the barotropic mode. During the barotropic time stepping, the free surface
and the barotropic velocity components are advanced with the short time step, then averaged over the
sequence of the barotropic steps to prevent aliasing. Then the 3D momenta are advanced to the baroclinic
time step n + 1, and vertical integrals of the new fields are subtracted from the similar values from the baro-
tropic sub-model. The resultant differences are then uniformly distributed throughout the vertical column to
make sure that the corrected 3D velocity components have the same vertical integrals as do the barotropic
components. At the same time, the free surface f at the new baroclinic step is assigned its new state from
the barotropic sub-model.

Because of the replacement of f at n + 1 with its fast-time-averaged value, it is no longer possible to recon-
struct the vertical velocity via (21) in such a way that the top kinematic boundary condition (25) is respected.
Alternatively, one might distribute the mismatch in (25) throughout the water column, so that the top bound-
ary condition holds, but at the expense of discrepancy in (21), [4]. In either case, a conservative update of the
tracer fields (16) loses its constancy preservation property.

3.4. Mode-splitting error

In the split-explicit method, the shallow water equations (SWE) are advanced in time, using the smaller
CFL-limited time step, to obtain the depth-integrated mode, e.g.,

oU
ot
þ � � � ¼ �gDrxfþ fgDrxfþ f g: ð26Þ

Here, g is the acceleration of gravity; D = h + f is total depth; U � D�u is depth-integrated velocity (barotropic
mass flux); $xf is a shorthand for of/ox; and
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f ¼ � 1

q0

Z f

�h

oP
ox

dz ð27Þ

is the vertically integrated pressure gradient. The latter is a functional of the topography, free-surface gradient,
and the free surface itself, as well as the vertical distribution of density and its gradient,

f ¼ f ½rxf; f;rxqðxÞ; qðzÞ�: ð28Þ
The term in curly brackets in (26) is interpreted as barotropic–baroclinic mode coupling. It is kept fixed during
the barotropic time stepping while the first term on the right hand side evolves. The disadvantage of this ap-
proach is that after the barotropic time stepping is complete and the new free-surface field is substituted into
the full baroclinic pressure gradient, its vertical integral will no longer be equal to the sum of the SWE-like
pressure gradient (computed using the new free surface, f 0 say) and the original coupling term (based on
the old free surface, f). This type of discrepancy is usually known as a mode-splitting error.

Unfortunately, this error plays the role of a disturbance, causing the vertically integrated pressure gradient
to not be in equilibrium with the barotropic mass flux. The barotropic time stepping drives the barotropic part
toward an equilibrium, but it is disturbed again due to the redefinition of the vertically integrated baroclinic
pressure gradient Ref. [35] analyzed the stability of a coupled linearized system in an isopycnic vertical coor-
dinate and showed that, if non-dissipative time stepping algorithms are used for both modes, the resultant
model is unavoidably unstable. An alternative definition of the barotropic mode in an isopycnic model that
reduces the mode splitting error is obtained by replacing both gD$xf terms in (26) with

of
oðrxfÞ

rxfþ
of
of

f: ð29Þ

This replacement may be shown to remove the dominant mode splitting error [7].

3.5. Improved mode-splitting

The algorithms in ROMS take into account the effects of the non-uniform density field, resulting in a more
accurate mode splitting method that is suitable for use in a terrain-following model. Consider a fluid element
bounded horizontally by two vertical lines corresponding to the locations of fi and fi+1 and vertically by the
free surface and bottom. The horizontal component of the pressure-gradient force acting on this element is
calculated by the integration of the pressure along the contour surrounding the fluid element:

F iþ1
2
¼
Z fi

�hi

P ðxi; zÞdz�
Z fiþ1

�hiþ1

P ðxiþ1; zÞdz�
Z xiþ1

xi

P ðx;�hðxÞÞ � ohðxÞ
ox

� �
dx ¼ J i � J iþ1 � J iþ1

2
: ð30Þ

In (30) P(x,z) is the hydrostatic pressure,

P ðx; zÞ ¼ g
Z fi

z0
qðx; z0Þdz0: ð31Þ

Assuming a finite-volume approach to approximate (31) and eventually (30) at the discrete level, the baro-
tropic pressure-gradient force at the velocity point iþ 1=2 is a function of the density in the vertical columns
i and i + 1, as well as the free-surface elevations fi, fi+1. Hence,

F iþ1
2
¼ f ðfiþ1; �qiþ1;1; . . . ; �qiþ1;N ; fi; �qi;1; . . . ; �qi;N Þ; ð32Þ

where the structure of the functional f depends upon the discretization details of the baroclinic pressure gra-
dient, typically involving nonlinear interaction of the fi and qi,k fields.

In the ROMS mode-splitting technique, it is assumed that f is changing during the barotropic time stepping
while the density values f�qi;kg remain frozen and change only during the baroclinic time step. However, the
nonlinear relation (32) holds in barotropic time. Of course, it would be prohibitively inefficient to recompute
f in (32) at every barotropic step by vertical integration of the whole 3D pressure gradient. Instead, in each
vertical column, once at every baroclinic time step before the barotropic mode calculation begins, ROMS
computes a vertically averaged density,
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�qðxÞ ¼ 1

D

Z fðxÞ

�hðxÞ
qðx; zÞdz ð33Þ

and a vertically averaged dynamical density,

q�ðxÞ ¼ 1
1
2
D2

Z fðxÞ

�hðxÞ

Z fðxÞ

z
qðx; z0Þdz0

� �
dz; ð34Þ

where D ” D(x) = f(x) + h(x) is the total thickness of the water column. Changing the integration variable to
r = (z � f)/D yields

�qðxÞ ¼
Z 0

�1

qðx; rÞdr; q�ðxÞ ¼ 2

Z 0

�1

Z 0

r
qðx; r0Þdr0

� �
dr;

which implies that �q and q* are actually independent of f as long as the density profile q = q(r) stays the same.
Expressed in terms of �q and q*, (30) becomes

F iþ1
2
¼ g

q�i D2
i

2
� q�iþ1D2

iþ1

2
þ
Z xiþ1

xi

�qD
oh
ox

dx
� �

: ð35Þ

This is a finite-volume discretization of the pressure-gradient term in the vertically integrated momentum
equation,

o

ot
ðDUÞ þ � � � ¼ � 1

q0

g
o

ox
q�D2

2

� �
� �qD

oh
ox

� �
¼ � 1

q0

gD q�
of
ox
þ D

2

oq�

ox
þ ðq� � �qÞ oh

ox

� �
: ð36Þ

If q� � �q � q0, the right side of (36) reverts back to the familiar SWE pressure-gradient term of (26), but in the
general case non-uniformity of �q and q* leads to the appearance of two extra terms that are baroclinic in nat-
ure. The problem therefore reduces to the search for a suitable method of calculation of �q and q* from the 3D
density field f�qi;kg and an appropriate discretization of (35) and (36).

To address the first issue, consider, e.g., a piecewise-parabolic reconstruction of the vertical density profile
from a set of discrete values f�qkjk ¼ 1; 2; . . . ;Ng that is interpreted as a set of grid-box averages within each
vertical grid box Hk (Fig. 2),

Fig. 2. Reconstruction of the vertical density profile by parabolic segments: for each k = 1,2, . . . ,N, �qk are density averaged over grid
boxes Hk of a vertically non-uniform grid. The shaded area is the same as the area of the diagonally hatched rectangle [7].
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qðz0Þ ¼ �qk þ
qkþ1

2
þ qk�1

2

Hk
z0 þ 6

qkþ1
2
þ qk�1

2

2
� �qk

� �
z02

H 2
k

� 1

12

� �
: ð37Þ

Here the local vertical coordinate z 0 spans the grid box Hk, so that � Hk
2
6 z0 6 þ Hk

2
, and qk�1

2
� qð� Hk

2
Þ are the

density values at the upper and lower grid box interfaces z ¼ � Hk
2

computed via an appropriate reconstruc-
tion algorithm. Regardless of the details of computing qk�1

2
, Eq. (37) guarantees that

1

Hk

Z þHk=2

�Hk=2

qðz0Þdz0 � �qk ð38Þ

and leads to the discretization of vertically averaged density,

�qi ¼
XN

k¼1

�qi;kH i;k

,XN

k¼1

H i;k: ð39Þ

To compute q* we note from 37,38 that the hydrostatic pressure in (30) can be expressed as a continuous func-
tion within each grid box Hk,

P ðz0Þ ¼ P kþ1
2
þ g

Z Hk=2

z0
qðz00Þdz00

¼ P kþ1
2
þ gHk �qk

1

2
� z0

Hk

� �
þ

qkþ1
2
qk�1

2

2

1

4
� z02

H 2
k

� �
þ 2

qkþ1
2
qk�1

2

2
� �qk

� �
z0

4Hk
� z03

H 3
k

� �� �
; ð40Þ

where P kþ1
2

is the pressure at a depth corresponding to the interface between Hk and Hk+1

P Nþ1
2
¼ 0 and P k�1

2
¼ g

XN

k0¼k

�qk0H k0 ; k ¼ 1; . . . ;N : ð41Þ

It can be verified from (40) that P ð�H k=2Þ � P k�1
2

and that the pressure distribution and its first derivative are
continuous across the grid box interfaces. Subsequent integration of (34) and (35) leads to

J i ¼
Z fi

�hi

P iðzÞdz ¼
XN

k¼1

Z þHi;k=2

�Hi;k=2

P iðz0Þdz0 ¼
XN

k¼1

Hi;k
�P i;k; ð42Þ

where

P i;k ¼ P i;kþ1
2
þ 1

2
gHi;k �qi;k þ

qi;kþ1
2
qi;k�1

2

6

� �
¼

P i;kþ1
2

P i;k�1
2

2
þ gH i;k

qi;kþ1
2
qi;k�1

2

12
ð43Þ

is the pressure averaged over Hi,k. This further leads to the definition of the vertically averaged dynamical den-
sity as

q�i ¼
1

1
2

PN
k¼1Hi;k

� 	2
�
XN

k¼1

Hi;k

XN

k0¼kþ1

�qi;k0H i;k0

 !
þ 1

2
H i;k �qi;k þ

qi;kþ1
2
qi;k�1

2

6

� �" #
: ð44Þ

Using the identity,

XN

k¼1

Hi;k

XN

k0¼kþ1

Hi;k0

 !
þ 1

2
Hi;k

" #
� 1

2

XN

k¼1

Hi;k

 !2

one can interpret (44) as just a weighted average. Furthermore, since

XN

k¼1

Hi;k � hi þ fi ¼ Di: ð45Þ
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Eq. (42) may be expressed as

J i ¼
1

2
gq�i D2

i : ð46Þ

To approximate J iþ1
2
, we assume that D, �q, and h are linear functions of the horizontal coordinate between

points xi and xi+1:

J iþ1
2
¼ g

Z xiþ1

xi

�qi
xiþ1 � x0

Dx
þ �qiþ1

x0 � xi

Dx

� �
Di

xiþ1 � x0

Dx
þ Diþ1

x0 � xi

Dx

� �
hiþ1 � hi

Dx

¼ g
�qi þ �qiþ1ð ÞðDi þ Diþ1Þ þ �qiDi þ �qiþ1Diþ1

6
ðhiþ1 � hiÞ: ð47Þ

After some algebra, (46) and (47) yield

F iþ1
2
¼ g

Di þ Diþ1

2
� q
�
i þ q�iþ1

2
ðfi � fiþ1Þ þ g

D2
i þ D2

iþ1

4
ðq�i � q�iþ1Þ

þ g
Di þ Diþ1

2
�

q�i � �qi

� 	
þ ðq�iþ1 � �qiþ1Þ

2
ðhi � hiþ1Þ þ

ð�qiþ1 � �qiÞðDiþ1 � DiÞðhiþ1 � hiÞ
12

: ð48Þ

The first three terms are obviously similar to the first, second, and third terms on the second line in (36),
respectively. The fourth term in (48) is on the order of O((Dx)3) while all three preceding terms are O(Dx),
so the former is negligible relative to the others as Dx! 0.

In the case of fi = fi+1 = 0, Di = hi and Di+1 = hi+1, hence (48) becomes

F ð0Þ
iþ1

2

¼ gðq�i � �qiÞ
h2

i

2
� gðq�iþ1 � �qiþ1Þ

h2
iþ1

2
þ gð�qi � �qiþ1Þ

h2
i þ hihiþ1 þ h2

iþ1

6
: ð49Þ

Unlike the SWE pressure gradient, this does not vanish unless there is a special balance between the densities
q�i , q�iþ1, �qi, �qiþ1, and the unperturbed thicknesses, hi and hi+1. For example, if density is a linear function of
depth, q = q(z) = � az resulting in

�qi ¼
1

hi

Z 0

�hi

ð�azÞdz ¼ ahi

2
; ð50Þ

q�i ¼
2

h2
i

Z 0

�hi

Z 0

z
ð�az0Þdz0 dz ¼ ahi

3
: ð51Þ

Then F ð0Þ
iþ1

2

vanishes, as verified by direct substitution of these expressions into (49).
We therefore split (48) into

F iþ1
2
¼ F ð0Þ

iþ1
2

þ F 0iþ1
2
; ð52Þ

where

F 0iþ1
2
¼ � 1

2
g
�
ðhi þ hiþ1Þðq�iþ1fiþ1 � q�i fiÞ þ q�iþ1f

2
iþ1 � q�i f

2i

þðhiþ1 þ hiÞ ðq�iþ1 � �qiþ1Þfiþ1 þ ðq�i � �qiÞfi þ
1

3
ð�qiþ1 � �qiÞðfiþ1 � fiÞ

� ��
ð53Þ

contains all the terms of (48) with f. The transition from (48) to (49)–(53) has no approximations.
If the density field is a function only of depth, the baroclinic pressure gradient should vanish. However, in

order to make f ð0Þ
iþ1

2

¼ 0 in (49), there must be cancellation between its terms that can be achieved only by hav-

ing a special relation between q�i and �qi. Except for a few special choices of the density profile (constant, linear,
or quadratic in z), this cancellation is not exact, but rather relies on the numerical accuracy of the integration
method. This is often referred to as hydrostatic inconsistency. The use of a high-order integration method does
not eliminate this inconsistency; it just reduces the error. For example, dropping the term,

gH j

qkþ1
2
� qk�1

2

12
; ð54Þ
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in (43) is equivalent to switching from a parabolic to a trapezoidal rule in integration of the hydrostatic equa-
tion. Examples of errors arising from hydrostatic inconsistency are shown in, e.g. [1].

3.6. Time stepping the coupled baroclinic–barotropic system

We now summarize the time-stepping algorithm in ROMS, focusing on the discrete-time interactions
between the modes (Fig. 3).

Stage 1: Compute the right side for the 3D momentum equations at time step n. Apply this right side to
advance the 3D momenta using a Leapfrog (LF) step combined with a half-step, backward inter-
polation with Adams–Moulton (AM3-like) coefficients (the result is time-centered at nþ 1=2).
Because no meaningful barotropic mass fluxes time-centered at nþ 1=2 are available yet, set the
vertical averages for the newly computed fluxes back to hUin.

Stage 2: Advance the tracer variables in a similar manner with a LF step combined with an AM3 interpo-
lation, placing the resultant values at nþ 1=2. This predictor algorithm is constancy preserving,
though not conservative. (This is acceptable for now. Constancy preservation and conservation
are simultaneously imposed in the corrector step below.)

Stage 3: Compute the right side for the 3D momentum equations from the mass fluxes and tracers (via den-
sity) at nþ 1=2. Vertically integrate everything and also compute and store vertically averaged den-
sities, �qi q�i , using (33)–(38) time-centered at nþ 1=2. Apply the right side to the 3D momentum
variables, but do not finalize the time step since Hn+1 and hUinþ1 are not available yet.

Stage 4: Compute the right side terms for the barotropic mode from barotropic variables using (48) for the
pressure gradient and subtract it from the corresponding vertical integrals of the 3D right side
computed in Stage 3 (i.e., convert them into baroclinic-to-barotropic forcing terms). Advance the
barotropic variables (slightly beyond the baroclinic time step, nþ 1, depending on the shape of
the fast-time filter), performing a 2-way, fast-time averaging of barotropic variables on the way.
The baroclinic forcing terms are kept constant during this procedure, but the barotropic pres-
sure-gradient terms are recomputed by (48) with participation of �qi and q�i at every barotropic step.
Once this is complete, update the vertical coordinate system fzi;j;k; zi;j;kþ1

2;
H i;j;kgnþ1 to be consistent

with hfinþ1.

Fig. 3. Barotropic–baroclinic mode data exchange in ROMS: Curved horizontal arrows symbolize the predictor LF step combined with
AM3 half-step-back interpolation of the result (light shading) and corrector sub-steps (dark shading). The four ascending arrows denote
the 2-way, vertically averaged densities, �q and q*, and the vertically integrated right side for 3D momentum equations [the last two meet
with the two small arrows symbolizing computation of the barotropic mode right hand side from barotropic variables; so that asterisks
(**) note the computation of baroclinic-to-barotropic forcing terms, two small arrows ascending to the right]. The five large descending
arrows symbolize 2-way, fast-time-averaged barotropic variables for backward coupling. Each arrow originates at the time when the data
is logically available, regardless of the temporal placement of the corresponding variable [7].
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Stage 5: Finalize the computation of the 3D mass fluxes begun in Stage 3 using the now available Hn+1, and
set the vertical average to hhUiinþ

1
2. from the barotropic mode.

Stage 6: Interpolate the 3D velocity components back in time to nþ 1=2 using a combination of the new
time-step values (from Stage 5), values from the predictor step (Stage 4), and old-time step values.
Set the vertical average of the resultant fields to hUinþ1 . Use the resultant velocity field and tracers
at nþ 1=2 to compute the tracer fluxes and advance the tracers to nþ 1. This step is both conser-
vative and constancy preserving.

3.7. Upstream-biased advection

The upstream-biased horizontal tracer advection in ROMS is constructed via a flux-form finite volume
method with the upwinding/upstreaming being achieved through a simple min/max flux directional discrim-
inator [33]. For a tracer quantity q, which would typically be the temperature or the salinity, the advection
terms can be compactly written as

Dt � ½ðF iþ1=2;j;k � F i�1=2;j;kÞ þ ðGi;jþ1=2;k � Gi;j�1=2;kÞ�=ðDxi;j�Dyi;jÞ; ð55Þ

where a zonal flux component has the form

F i�1=2;j;k ¼ Dzi;j;kDyi;jU i�1=2;j;k � ðqi�1;j;k þ qi;j;kÞ=2�maxðDzi;j;kDyi;jU i�1=2;j;k; 0Þ � ðqi;j;k � 2qi�1;j;k þ qi�2;j;kÞ=6

�minðDzi;j;kDyi;jU i�1=2;j;k; 0Þ � ðqiþ1;j;k � 2qi;j;k þ qi�1;j;kÞ=6 ð56Þ

and a meridional flux component is defined as

Gi;j�1=2;k ¼ Dzi;j;kDxi;jV i;j�1=2;k � ðqi;j�1;k þ qi;j;kÞ=2�maxðDzi;j;kDxi;jV i;j�1=2;k; 0Þ � ðqi;j;k � 2qi;j�1;k þ qi;j�2;kÞ=6

�minðDzi;j;kDxi;jV i;j�1=2;k; 0Þ � ðqi;jþ1;k � 2qi;j;k þ qi;j�1;kÞ=6: ð57Þ

The accuracy of this formulation is easily verified under the simplification where the velocities are assumed to
be globally constant and the grid metrics are ignored. Then, for example, the zonal (x-direction) advective flux
(with a constant velocity U > 0 and retaining only the zonal grid indices) is

F iþ1=2;j;k � F i�1=2;j;k ¼ U � ðqiþ1 � qi�1Þ=2� U � ðqiþ1 � 3qi þ 3qi�1 � qi�2Þ=6; ð58Þ

where the first flux term is a lower-order, spatially second-order accurate flux and the second term is a higher-
order, spatially third-order accurate flux. The respective numerical truncation errors for these two flux terms
on a regular grid with spacing h are:

ðqiþ1 � qi�1Þ=2 ¼ hqx þ ðh3=3!Þ � qxxx þOðh5Þ;
ðqiþ1 � 3qi þ 3qi�1 � qi�2Þ=6 ¼ ðh3=3!Þqxxx � ðh4=12Þ � qxxxx þOðh5Þ

ð59Þ

from which we find

½F iþ1=2;j;k � F i�1=2;j;k�=h ¼ U � ½qx þ ðh3=12Þ � qxxxx� ð60Þ

and therefore the advection scheme is third-order accurate in space. The min/max switch facilitates the pre-
scription of the higher-order flux contribution from the upstream direction. Note that the leading-order error
term in this upstream-biased formulation is equivalent to a hyper-viscosity term.

3.8. Conservative parabolic spline based vertical tracer advection

An ideal choice for vertical advection of tracers in ROMS is based on a discretization employing the con-
servative parabolic splines given by Eq. (36); (Fig. 2). The necessary property that these splines be conservative
is stated in Eq. (38).
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Splines are piecewise lower-order polynomials whose values and first derivatives are required to be contin-
uous from one grid element to another. The spline represented by Eq. (43) can be written as follows for two
consecutive vertical grid elements:

SkðfÞ ¼ qk þ ½ðF kþ1=2 þ F k�1=2Þ=Dzk� � zþ 6½ðF kþ1=2 þ F k�1=2Þ=2� qk� � ½z2=ðDzkÞ2 � 1=12�;
Skþ1ðfÞ ¼ qk þ ½ðF kþ3=2 þ F kþ1=2Þ=Dzkþ1� � zþ 6½ðF kþ3=2 þ F kþ1=2Þ=2� qkþ1� � ½z2=ðDzkþ1Þ2 � 1=12�;

ð61Þ

where now q is the tracer under consideration, F is the inter-facial flux, Dz is the grid element thickness and f is
the dimensionless, local grid coordinate variable. For Sk, this coordinate is such that �Dzk/2 6 z 6 + Dzk/2
and for Sk+1, it is �Dzk+1/2 6 z 6 + Dzk+1/2.

As S is a second-order polynomial, the condition of derivative continuity requires that the first derivatives
of Sk and Sk+1 should match at the common elemental boundary such that

S0kðþDzk=2Þ ¼ S0kþ1ð�Dzkþ1=2Þ; ð62Þ

with S 0 being the derivative of S with respect to z. This derivative condition gives rise to a tri-diagonal system
of equations for the inter-facial flux, F which after multiplying through by Dzk Æ Dzk+1 is

2Dzkþ1F k�1=2 þ ð2Dzkþ1 þ DzkÞF kþ1=2þDzkF kþ3=2 ¼ 3 � ðDzkþ1qk þ Dzkqkþ1Þ: ð63Þ

This system is solved in ROMS via the traditional Gaussian elimination method with a forward sweep to gen-
erate the matrix coefficients and a back substitution to achieve the solution.

Upon obtaining the inter-facial flux values, they are thereafter transformed into the true tracer flux by mul-
tiplying them with the corresponding vertical x-velocity (the velocity following the vertical r-levels) which
reside at the inter-facial locations due to the staggering of the ROMS vertical grid. As x = 0 at both the bot-
tom and top of the model grid, this condition translates to a non-flux condition at both ends of the vertical
grid. Finally, the tracers are updated for the vertical advection contribution as

Qk ! Qk þ Dt � ðF kþ1=2 � F k�1=2Þ=Dzk: ð64Þ

4. Skill assessment

4.1. Skill assessment in a tidally driven estuary

Estuarine salinity structure is a result of the interplay between the buoyancy flux from riverine inflow,
advection by tides and the estuarine circulation, and mixing. Accurate numerical predictions of, say, the
time-dependent salinity field thus depend critically on the model representation of tidal and sub-tidal motions
as well as the sub-gridscale turbulence closure parameterizations for mixing of momentum and salt.

We applied the ROMS model to simulate the tidal dynamics and salt transport in the Hudson River Estu-
ary [36] over a 50-day period with large variations in tidal forcing and river discharge. The Hudson River
Estuary is located along the northeast coast of the US (Fig. 4) and provides New York State a major water
resource for water quality control, navigation, and recreation. The model domain of the Hudson River Estu-
ary extends from the Battery to the Federal Dam. The average width in the lower reach is about 2 km, broad-
ens to nearly 5 km north of Hastings, and then narrows to nearly 500 m near the dam. This domain is
horizontally discretized with 200 along-channel and 20 cross-channel cells. Grid resolution in the region of salt
intrusion (first 40 km) has along-channel cell spacing on the order of 300 m and lateral spacing approximately
100 m. From km 40 to 250 the grid spacing telescopes linearly to reduce resolution in the upstream fresh water
zone and approaches 4 km in length at the northern boundary. In the vertical, the bathymetry varies from 2 to
25 m with a mean depth of 8 m. The vertical dimension is discretized with 20 terrain-following sigma levels and
a vertical stretching parameter allows increased resolution near the surface and bottom boundaries.

Boundary conditions are zero wind stress at the free surface and a bottom roughness length z0 = 0.002 m. At
the northern boundary, a depth-integrated flow was imposed to provide transport into the domain that was con-
sistent with observed flows for the time period. Salinity was set to zero. At the southern end, the observed time
series of water level was used to force the depth-integrated momentum through a reduced physics boundary
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condition. The salinity at the southern end was imposed using a gradient boundary condition. The salinity gra-
dient depends on the magnitude of the salinity, with near-zero gradients as the salinity approaches zero and oce-
anic values, and a maximum gradient as the salinity reaches mid-estuarine values.

Fig. 4. Hudson River, observation site locations, and model domain [36].
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The 50-day simulation period includes three spring tides and two neap tides with spring tides centered on
days 117, 132, and 145. The magnitude of semidiurnal tidal sea level amplitude approaches 0.8 m during
spring tides and decreases to nearly 0.4 m during neap tides. River discharge varied from 400 m3 s�1 to a fre-
shet that reached 2400 m3 s�1 from days 132 to 140. The increased fresh water transport was coincident with
the weakest of the spring tides.

Validation is conducted with respect to a measurement program consisting of a 43-day deployment of
oceanographic equipment from April 23 to June 5, 2002 (year days 113–156; [37]). Sensors to measure pres-
sure, temperature, conductivity, and vertical profiles of velocity were positioned on bottom-mounted tripods
and taught wire mooring arrays at six locations at cross section N3, near river km 23. In addition, nine along-
channel hydrographic surveys were carried out to measure the vertical structure of salinity along the main axis
of the estuary.

Predictive skill is based on quantitative agreement between model and observations. Using a method pre-
sented in [38] we define:

Skill ¼ 1�
P
jX model � X obsj2P

ðjX model � X obsj þ jX obs � X obsjÞ2
; ð65Þ

where X is the variable being compared with a time mean. Perfect agreement between model results and obser-
vations will yield a skill of one and complete disagreement yields a skill of zero. Model skill was evaluated for
all prognostic quantities.

Skill for the different model results are listed in Table 1. The model has skill greater than 0.85 in predicting
barotropic quantities of sea level, depth-averaged velocity and barotropic transport (flux of water). This skill is
highest in the lower reach of the estuary where the study was focused. For example, the model has significant
skill at N3 in simulating the observed time series of surface and bottom salinity (Fig. 5) as well as the vertical
structure of salinity and velocity (Fig. 6). The simulation has least skill (0.68) in reproducing the near-surface
circulation, a possible consequence of the omission of explicit surface forcing (e.g., the winds). In this appli-
cation, alternative vertical mixing schemes, drawn from the GLS formulation, show little systematic impact on
skill (Fig. 6).

4.2. Nitrogen cycling in the coastal ocean

Continental shelves play a key role in the global cycling of biologically essential elements such as nitrogen
and carbon. The shelves are known to be highly productive, the majority of the oceanic burial of organic car-
bon occurs on continental shelves and the adjacent slope, and shelf sediments are important sites for denitri-
fication. However, the exact role of continental shelf processes in global biogeochemical cycling remains
poorly understood.

Table 1
Predictive skill of model parameters [36]

Parameter Skill (Eq. (65))

Sea level 0.85–0.95
Depth-average velocity 0.92
Salinity 0.85
Vertical velocity profiles 0.89
Vertical salinity profiles 0.77
Salt intrusion length 0.87
Longitudinal salinity gradient 0.82
Estuarine circulation:

Near bottom 0.78
Near surface 0.68

Barotropic transport 0.91
Salt flux 0.91
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Here ROMS is implemented for the NorthEast North American (NENA) continental shelf [24]. The
hydrography of the region is to a large extent influenced by remote processes, including the relatively cool
and fresh shelf water entering from the north, as well as the entrainment of warm and salty waters originating
from the Gulf Stream. The influences of these remote influences are incorporated by nesting of the NENA
domain within a ROMS North Atlantic (NA) model. The horizontal resolution of the NA model is 10 km,
and 30 sigma levels are used in the vertical direction. Prior experience with ROMS in the NA has shown that
a horizontal resolution near 10 km is sufficient to obtain a satisfactory Gulf Stream separation and nominal
eddy variability [6].

The NENA model has been implemented with similar resolution to the NA configuration (10 km in the
horizontal direction, 30 vertical levels) and is forced with the same 3-day average surface fluxes. A one-way
nesting procedure is employed whereby 3-day average temperature, salinity and baroclinic velocity from
the basin-wide simulation are imposed at the oceanic perimeter of the shelf model. The depth-average velocity
and sea surface height boundary conditions [39,40] are used to allow the outward radiation of gravity waves
generated within the domain without upsetting the perimeter tracer fluxes. Coastal freshwater inputs are
applied using observed river flow data from USGS and Canadian Rivers. Tidal currents and the associated
mixing are relatively small in most of our model domain, except for the Gulf of Maine/Bay of Fundy system;
tidal forcing is therefore omitted.

A coastal biogeochemical model of Fasham type (Fig. 7; Section 2.4) was initialized with the state of the
NA model at 1 January 1993, spun up for 1 year, and integrated for the subsequent 2 years (1994 and
1995). This simulation is evaluated with a particular focus on the Middle Atlantic Bight (MAB). The MAB
is the region of the eastern continental shelf of the United States that extends from Nantucket Shoals in

Fig. 5. (a) Environmental conditions of river discharge at Green Island dam and amplitude of semidiurnal sea level. Comparison of
observational and model results at site N3 for (b) surface and bottom salinity and (c) vertical salinity stratification [36].
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the north to Cape Hatteras in the south. Available data sets from the MAB were used to create a merged bio-
geochemical dataset, including chlorophyll, nitrate and ammonium concentrations. A monthly climatology of
these variables for the inner and outer shelf (delineated by the 50-m isobath) was generated for model/data
comparison.

An example of spatial patterns in surface chlorophyll is given in Fig. 8, where the simulated mean surface
chlorophyll for July 1994 is shown in comparison to the SeaWiFS chlorophyll for July 2003. Chlorophyll con-
centrations are highest near the coast, decrease on the outer shelf and again in the slope waters with local chlo-
rophyll maxima in the Gulf Stream front; lowest concentrations are found in the Sargasso Sea. The model
underestimates surface chlorophyll on Georges Bank when compared to SeaWiFS chlorophyll, owing to
the neglect of tides and tidal mixing.

A more quantitative assessment of model/data agreement is shown in a Taylor diagram [41] in which the
ratio of the standard deviations of the simulated and observed fields, their correlation, and their centered RMS
difference can be displayed by one point in a single 2D diagram (Fig. 9). The ensemble of SeaWiFS points in
Fig. 9 illustrates the discrepancies to be expected when comparing a single year to the climatology. Note that
model results are expected to deviate somewhat from the climatology owing to unresolved internal variability,
imperfect initial and forcing conditions, and most importantly in our case owing to interannual variability.
Hence apparent differences between the test and the reference fields may be statistically or practically
insignificant.

The expected level of difference in pattern correspondence due to interannual variability can be gauged by
the comparison of the individual SeaWiFS years (1998–2004) with the climatology. If the whole domain is

Fig. 6. Vertical structure of modeled and observed tidal currents and salinity at site N3. Average maximum flood and maximum ebb tidal
current profiles during (a) neap tides and (b) spring tides. Average salinity profiles at maximum flood and maximum ebb during (c) neap
tides and (d) spring tides. Flood tide salinity profiles are offset 5 psu [36].
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considered, the match between an individual SeaWiFS year and the climatology is within 10% of the ampli-
tudes of variations (0.9 6 rn P 1.1), with a correlation R > 0.9, and an RMS difference E < 0.4. With the
exception of 1998, a similar match is obtained when the analysis is restricted to the MAB. 1998 is anomalous
with amplitudes of variation significantly larger than the climatology and the other SeaWiFS years. The pat-
terns of modeled surface chlorophyll and the SeaWiFS climatology are within 40% of the amplitudes of var-
iation (0.6 6 rn P 1.4) and have a lower correlation (0.4–0.8). The model’s spatial resolution is thus sufficient
to capture the variability of surface chlorophyll that is represented by the 9-km SeaWiFS data. When the sta-
tistics are restricted to the MAB, the simulated patterns match the SeaWiFS climatology more closely in terms
of centered RMS difference and correlation than SeaWiFS 1998.

4.3. Basin-scale response to large-scale air-sea coupling

Regional ecosystem variability is an integrated response to local/short- and basin/climate-scale changes.
Ecosystem dynamics have been linked to local topographic and coastal features and meso-scale activity, as
well as to long-term and basin-scale ocean states and inter-annual changes caused by phenomena such as

Fig. 7. Schematic of the biological model applied to the NorthEast North Atlantic model [24].

Fig. 8. (a) Model-simulated mean surface chlorophyll for July of 1994 and (b) SeaWiFS mean chlorophyll for July of 2003 (same
colorscale) [24].
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the El Niño/Southern Oscillation. One of the main challenges is to understand the cumulative effects of the
large- and regional-scale physics on ecosystem dynamics and variability.

A retrospective hindcast of the circulation in the North Pacific basin has been conducted to assess basin-
scale variability on inter-annual and episodic time scales [42]. The North Pacific basin model domain used for
this work ranges from 30 �S to 65 �N and from 100 �E to 290 �E in latitude and longitude, respectively. The
average horizontal grid spacing is approximately 0.4� and 30 vertical layers are used. The resulting grid has
476 · 238 · 30 points. The stretched generalized terrain-following coordinates (Section 3.1) result in a vertical
distribution of grid points that is enhanced in the surface and benthic boundary layers. The baroclinic and
barotropic timesteps are 1600 and 36 s, respectively. Vertical mixing is determined by the KPP scheme. As
a consequence of implicit scale-selective smoothing in the third-order upwind advection scheme (Section
3.7), no explicit horizontal dissipation or diffusion is needed. A non-dimensional quadratic bottom drag coef-
ficient of 3 · 10�3 is used. The model bathymetry is interpolated from ETOPO5 [43] with a minimum depth set
to 40 m. An attempt was made to keep isobaths from intersecting side walls and to keep shallow areas intact.
Nevertheless, at the current resolution, the shelf areas are poorly resolved and topographic smoothing creates
significant discrepancies. Tides and riverine inputs are omitted in these computations.

In order to evaluate the basin-wide skill of the hindcast simulations, we compare the model output with the
sea surface height fields from the SSALTO/DUACS 14 delayed time product distributed by AVISO at [44].
This product combines Topex/Poseidon, ERS-1, 2 and Jason altimetry data into weekly global sea surface
height anomaly maps with the spatial resolution of 1�. Following [45], the comparison is performed using
4� longitude · 1� latitude resolution. Fig. 10 shows the root-mean-square (RMS) and correlation coefficient
for the model and data sea surface height time series over the entire 1996–2002 period. This comparison
assesses the model ability to reproduce large-scale features of the ocean circulation in the North Pacific.
The analysis shows positive correlations in most regions; in the tropical and Eastern Pacific positive correla-
tions can be higher than 0.8. The RMS difference is below 4 cm in many areas with the errors generally small-
est in the Eastern Pacific.

The poorest correlation and largest RMS differences occur in the Western Pacific where the model is unable
to reproduce the observed monthly variability. We note that in this region the dominant mode of monthly
variability is related to the western boundary current and its associated dynamics (e.g., meanders, eddy for-
mation, etc.) which at the current spatial resolution of 0.4� the model is unable to fully reproduce. Another

Fig. 9. Taylor diagram comparing monthly mean fields of log-transformed chlorophyll estimates from the model and SeaWiFS (the ‘‘test’’
fields) with a log-transformed SeaWiFS climatology (the ‘‘reference’’ field indicated by the black dot on the x-axis) for the whole model
domain and for the Middle Atlantic Bight only. The radial distances from the origin are proportional to the ratio standard deviations; the
azimuthal positions indicate the correlation coefficient; and the distance between the ‘‘test’’ points and the ‘‘reference’’ point indicates the
centered RMS difference. The definitions of the total time–space (red) and spatial–annual (black) statistics [24].
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region where the correlation deteriorates is in the eastern and northern Gulf of Alaska and along the southern
side of the Aleutian Islands. These are regions where long-lived (several years) anti-cyclonic eddies, denoted as
Haida, Sitka, and Yakutat eddies, have been observed [46,47], but are poorly represented by the model at the
current resolution.

While many features of the North Pacific circulation and its variability are reproduced by the model, the
comparisons shown in Fig. 10 also indicate deficiencies in the numerical solution. We make the observation
that the patterns of error seen in Fig. 10 reflect features of the oceanic circulation (most obviously western
intensification). We speculate that inaccurate representation of sub-gridscale processes (below 0.4� in this case)
is the main contribution to the errors in the large-scale mean circulation. However, we cannot discount at this
stage that errors in the forcing fields are also a prominent contributor to overall error levels.

The dominant mode of observed inter-annual variability in the Equatorial and Eastern Pacific is related to
the El Niño/La Niña cycle. Cross correlation coefficients of sea surface height anomalies between a station
near the equator (station 1 at 9.3 �N, off the coast of Panama) and various stations along the coast of North
America are presented in Table 2. The correlation coefficient for the stations within the region of maximum El
Niño influence (south of 28 �N) are 0.77–0.83 which correspond to the values (0.75–0.84) derived from the
altimetry analysis of [48]. Our correlation value between the Equator and Alaska of 0.67 is considerably higher
than the 0.41 of the satellite derived product. This is likely due to the inadequate representation in the model
of the steep and narrow shelf off the coast of North America which limits the effectiveness of shelf-wave
scattering.

4.4. Sea ice

Regional sea ice distribution and dynamics may be expected to respond rapidly and sensitively to variability
in the Earth’s climate system. The potential regional and/or global consequences of sea ice changes include sea

Fig. 10. Comparison for 4� · 1� monthly means of the ROMS North Pacific simulation for 1996–2002 forced by daily fluxes from the
NCEP–NCAR Reanalysis [52] with sea level heights from SSALTO/DUACS time-delayed merged altimetry maps [42].

Table 2
Correlation coefficients of sea surface height anomalies between station 1 (latitude 9.3 �N) and stations along the coast of North America
[42]

Station # Location Latitude (North) of station Correlation coefficient (r)

3 Southern Mexico 21.1 0.83
4 Baja California 27.9 0.77
6 California 46.7 0.69
10 Alaska 58.9 0.69
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level rise, increased freshwater fluxes to low-latitude coastal regions (e.g., the MAB), and modifications or
damage to regional ecosystems.

The dynamic–thermodynamic sea ice model of Section 2.5 has been coupled to a three-dimensional ocean
general circulation model for the purpose of conducting ocean climate dynamical downscaling experiments for
the Barents Sea region [28]. The regional model domain is shown in Fig. 11. The horizontal grid size varies
between 7.8 and 10.5 km, with an average of 9.3 km. In the vertical, 32 coordinate levels are used, with
enhanced resolution near the surface and bottom. The generic length scale (GLS) scheme [13] was used for
sub-gridscale mixing of mass and momentum, with the two-equation k–kl model parameters. The time step
used in the simulation was 450 s for both the ocean internal mode and the ice thermodynamics; the ratio
of ocean internal to external mode time step is 45. The ratio of ice thermodynamic to dynamic time step is
60. Radiation open boundary conditions ([39,40]) were prescribed for barotropic normal velocity components
and the free surface, respectively. Flow relaxation scheme [49] open boundary conditions were employed for
three-dimensional velocity components and tracers.

The regional model was forced at the boundaries with interpolated 5-day mean fields from a larger-area
model (LAM) and with tidal velocities and free-surface heights from eight constituents of the Arctic Ocean
Tidal Inverse Model by [50]. The large-area model is used to supply boundary and initial conditions to the
regional Barents model. A stretched spherical coordinate grid [51] is used in the horizontal, with the North
Pole situated in central Asia and the South Pole situated in the Pacific Ocean west of North America. In
the Barents Sea region, the horizontal resolution of the LAM is approximately 50 km. There were 30 general-
ized coordinate levels, stretched to increase vertical resolution near the surface and bottom. A time step of
1800 s was used for both the ocean internal mode and ice thermodynamic time step. A ratio of 40 was used
between the ocean internal and external mode time steps. A ratio of 60 was used between ice thermodynamic
and dynamic time steps. No tides were included in the LAM simulation. The vertical mixing scheme employed
was the LMD [8] parameterization. The atmospheric forcing was obtained from the NCEP/NCAR reanalysis
data [52]. Daily mean wind stress, and latent, sensible, downward shortwave radiative and net longwave radi-
ative heat fluxes were applied as surface forcing after correcting for differences in model and NCEP surface
conditions, such as in surface temperature and ice concentration. The flux corrections applied were developed

Fig. 11. Barents Sea regional model domain showing the location of sections: F (Fugløya-Bjørnøya), K (Kola), V (Vardø North),
S (Spitzbergen Bank) and N (West Novaya Zemlya) [28].
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by [53] and provide a feedback between the model surface temperature and applied heat fluxes, thus minimiz-
ing problems with drift in model surface temperatures.

Surface forcing for the regional model was the same as that applied in the large-area model simulation, but
with the exception that the NCEP/NCAR Reanalysis cloud cover fraction was modified to provide the same
monthly mean cloud cover climatology over the period 1983–2002 as the International Satellite Cloud Clima-
tology Project (ISCCP) cloud cover data [54]. This necessitated the modification of the downward shortwave
radiation and net longwave radiation fluxes to be consistent with the new cloud data. In the first simulations of
Barents Sea ice cover, we found excessive melting of sea ice in summer by shortwave radiation due to the
NCEP/NCAR Reanalysis cloud cover fraction being too low by a factor of approximately 0.75. This problem
was largely, but not entirely, remedied by the use of ISCCP cloud cover data. Initial conditions for the Barents
regional model were obtained from the archived 5-day mean large-area model fields interpolated to January 1,
1990.

The Barents simulation was conducted for the period 1990–2002. Temperatures have been averaged across
portions of three sections in the Barents Sea: Fugløya-Bjørnøya, Vardø North and Kola, sections F, V and K,
respectively, in Fig. 12. The Institute of Marine Research in Bergen, Norway, has been monitoring the
Fugløya- Bjørnøya section six times per year and the Vardø North section for four times per year for 28 years.
Section-mean temperatures have been computed over the depth range of 50–200 m and between 71.5� and
73.5 �N from the Fugløya-Bjørnøya section and between 72.25� and 74.25 �N from the Vardø North section.
The overall error statistics are provided in Table 3. There is negligible bias in the modeled Fugløya-Bjørnøya
results, but the bias in the Vardø North and Kola results are appreciable. The higher bias at the Kola section
than at Vardø North is attributable to the 0–200 m depth range at Kola relative to the 50–200 m range at
Vardø North used in constructing the averages. While the root-mean-square of the error after removal of
the bias (denoted RMSEu) is comparable in the three sections, the bias error at the Vardø North and Kola

Fig. 12. Modeled monthly mean (red) and observed (blue) time series of the mean Vardø N section temperatures. Averages are computed
over a depth range of 50–200 m, and from 72.25� to 74.25 �N. Note that the model values shown have been reduced by a constant
0.5 �C.[28].
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sections is over twice the RMSEu and accounts for over 80% of the total mean-square error. As will be noted
below, the cause of this positive bias error is likely the excessive inflow of Atlantic Water in the model results.

Shown in Fig. 12 are monthly mean model temperatures and averaged temperatures from the Vardø North
hydrographic sections. A constant value of 0.5 �C was subtracted from the model Vardø North temperatures
to remove the bias of +0.48 �C and simplify the comparison with the observations. The results from both sec-
tions show the model is in generally good agreement with the observed seasonal and interannual fluctuations.

Sea ice concentration in the Barents Sea can exhibit considerable variation both seasonally and inter-annu-
ally. Typical ice concentration distributions from the maximum and minimum ice extent periods during the

Table 3
Mean error (bias) and root-mean-square error with the bias removed for the Fugløya-Bjørnøya, Vardø North and Kola sections mean
temperatures based on the period 1991–2002 [28]

Section Mean error (_C) RMSEu (C)bias removed

Fugløya-Bjørnøya 0.00 0.26
Vardø North 0.48 0.23
Kola 0.63 0.26

Fig. 13. Modeled versus Special Sensor Microwave/Imager (SSM/I) daily mean ice concentrations. The top row is from March 20, 1993,
the lower row is from September 20, 1993. The left-hand column contains the model fields, the right-hand panel contains the SSM/I fields.
The March modeled ice edge locations in the northern and southern Barents are in good agreement with observations, but show too much
ice in the Greenland Sea and too little north and east of Spitzbergen. The September model results show an ice edge displaced to the north
of the observed ice edge [28].
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year are shown in Fig. 13. Given that the fields shown are daily mean values and, thus, effectively snapshots of
ice distributions, the agreement between model fields and observations is remarkably good. The SSM/I (Spe-
cial Sensor Microwave/Imager) data has a spatial resolution of 25 km, whereas the model resolution is 9 km.
The satellite values are linearly interpolated onto the model grid and will appear somewhat smoother than the
modeled values. The locations of the March modeled ice edges in the northern Barents (76 �N) and in the
south-eastern Barents (69 �N) are in good agreement with observations. The model results show too much
ice in the Greenland Sea and too little ice north of Spitzbergen along 82–85 �N, between 20� and 50 �E.
The September model results are in good general agreement with the observations, but show too much ice-
melt. The modeled ice edge is too far to the north.

To obtain an integral estimate of model performance, the monthly mean total areal ice cover has been tab-
ulated from model results and from SSM/I satellite data. Fig. 14 shows that the model results successfully
track the seasonal and inter-annual variability, but that there is a systematic under-estimation of summer
ice cover, consistent with the September results shown in Fig. 13. The modeled under-estimate of ice concen-
tration in summer is likely attributable to excessive shortwave radiation. It was argued previously that the
positive bias in modeled temperatures ‘downstream’ of the Barents Opening is likely due to excessive inflow
of Atlantic Water. If that is the case, one should expect to see a negative bias in the ice cover in the central
Barents Sea. This condition is confirmed; the model results show a nearly constant offset of �1 · 105 km2 from
the observations in the 12-month running mean.

5. Future capabilities and the outlook for operational prediction systems

As demonstrated in these recent validation efforts, the Regional Ocean Modeling System has substantial
skill in producing deterministic (forward-model) simulations across a range of space/time scales and oceanic
system types. As suggested above, much of this skill can be credited to a robust computational engine that

Fig. 14. Monthly mean modeled (red) and SSM/I (blue) time series of the ice-covered area in the model domain [28].
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combines novel methods, e.g., higher-order spatial treatments, quasi-monotone advection, and conservative
time-stepping. Nonetheless, limitations to the forward model algorithms still persist, most importantly having
to do with the parameterization of sub-gridscale phenomena. The availability of, and access to, high-quality
forcing data (e.g., atmospheric fluxes) and validation fields (e.g., in the oceanic interior) are also a perennial
concern.

Through the efforts of its distributed network of development and applications specialists, the ROMS sys-
tem continues to evolve at a rapid pace. Many additional capabilities, not reviewed in detail here, are in
advanced stages of implementation and/or testing. Some of these include: an option for non-hydrostatic phys-

ics; dynamical enhancements to incorporate, e.g., near-shore processes (wetting/drying, radiation stresses, sur-
face waves); the capability to perform simulations on block-structured grids; individual-based models for higher
trophic levels which explicitly incorporate behavior; and advanced methods for data assimilation. The latter are
of particular importance for multi-purpose regional ocean prediction.

Forecasting systems based upon ROMS, which combine available observing networks and state-of-the-art
methods for data assimilation, are under active development and initial application. For example, we are now
implementing data assimilation methods for ROMS which allow a relatively inexpensive computation of the
gradient of the fit cost function using the adjoint model [55]. We are also testing the 4D variational assimila-
tion (4DVAR) approach as well as the Inverse Ocean Modeling system (IOM; [56]) representer method for-
malism for ROMS data assimilation. Proto-type demonstrations of ROMS in forecasting mode have been
conducted in several oceanic regions including the US East Coast, the East Australia Current System, and
the Southern California Bight.

One location, having advantages for testing of these new techniques, is the California Current System. The
CCS is dynamically rich; it is forced both locally by atmospheric fluxes and remotely by larger-scale climate
variability (e.g., El Nino signals), and exhibits intense in situ mesoscale turbulence. In addition, the California
Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled the Southern California Bight

Fig. 15. Example of model forecast for the 1998 September CalCOFI cruise. The model was initialized with a simple data assimilation
procedure in the month of July 1998 and then integrated forward with climatological winds and no further assimilation.
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(SCB) region of the CCS for over 50 years, providing a unique time series of physical, chemical, and biological
data (e.g. [57,58]).

The CCS has been extensively studied using ROMS in seasonal cycle simulations, retrospective hindcast
and short-term and long-term forecasts [59]. Assuming that unstable mesoscale eddies dominate the physical
balances, one anticipates that model fitting and/or forecasting skill is achievable to at least the eddy turn-
around time scale, which is roughly one to three months. Indeed, some preliminary results reveal remarkable
comparability between flows forecast from July 1998 to those observed 2 months later in September 1998
(Fig. 15). If atmospheric forcing dominates the flow variability, however, then the forecast skill is limited only
by the quality of the atmospheric forecast (roughly 2 weeks for deterministic patterns, roughly 1 year for El
Nino teleconnection signatures, and many decades for shifts in the climate due to greenhouse gas forcing sce-
narios, such as used by [60]). The 1997–1998 El Nino and the 1999–2000 La Nina time periods were sampled
particularly well in the SCB. These will give us a unique opportunity to test fitting and forecasting skill and to
assess dynamic and ecosystem balances over inter-annual time periods.

In summary, the timely confluence of three factors – robust, multi-purpose marine modeling systems; long-
duration observational datasets, both new and retrospective; and advanced assimilation methodologies – is
poised to bring about a period of rapid evolution in our ability to forecast and to manage the ocean circulation
and its resources. The Regional Ocean Modeling System, as well as other marine modeling systems under con-
current development, can be expected to contribute importantly to this progress. In an initial proof of concept,
the ROMS system described above is being ported to operational use within the National Oceanic and Atmo-
spheric Administration for the forecasting of water level and currents in several US estuaries.
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