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[1] A coastal ocean forecasting system was developed for the Long-term Ecosystem
Observatory (LEO) on New Jersey’s inner shelf. The forecast system comprised an ocean
model, the Regional Ocean Modeling System, forced by a high-resolution atmospheric
forecast, with assimilation of ocean data from ships and coastal radar systems. The
forecasts were used to aid the deployment of real-time adaptive sampling observing
systems during the July 2001 Coastal Predictive Skill Experiment. Temperature and
salinity assimilation data were prepared by optimal interpolation of shipboard towed-body
data. Surface current observations from coastal radar were projected vertically for
assimilation using a statistically based extrapolation. The assimilation methods tested with
the operational forecast system in July 2001 were continuous nudging and intermittent
melding of the model forecast and gridded data. Observations from a validation array of
current meter and thermistor moorings deployed on a cross-shore line through the center
of the LEO intensive observing area were used to formulate a set of quantitative model
skill metrics that focused on aspects of the two-layer wind-driven upwelling and
downwelling circulation that characterizes ocean dynamics during the stratified summer
season along this coast. An ensemble of model and data assimilation configurations were
tested, showing that the k profile parameterization for vertical turbulence closure, and
assimilation by intermittent melding, comprised the forecast system with the more
significant skill as measured by the mean squared error of the validation metric time series.
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1. Introduction

[2] Coastal ocean modeling efforts at the Rutgers Uni-
versity Long-term Ecosystem Observatory (LEO) have
focused on the development and validation of a relocatable
coastal ocean forecasting capability. During the Coastal
Predictive Skill Experiment (CPSE) at LEO during the
summer of 2001, a regional ocean forecasting system was
implemented consisting of an ocean model forced by a
high-resolution atmospheric forecast, with assimilation of
ocean data from towed-body temperature and salinity
observations and surface currents from a combination of
high-resolution and long-range radar systems. Ensembles of
atmosphere and ocean forecasts were generated twice per
week for four consecutive weeks from 11 July through
7 August 2001. These predictions were incorporated into
the decision making process for the scheduling of ship-

based observations during each subsequent 3 day forecast
period, so as to adapt the subsurface sampling network to
the evolving circulation.
[3] Here we describe the elements of the modeling and

data assimilation system as implemented at LEO during
July–August 2001. Quantitative validation metrics are
formulated and used to evaluate the model performance at
simulating the upwelling and downwelling circulations that
were the focus of bio-optical and ecosystem observational
programs during the CPSE.

2. Forecast System Overview

[4] The LEO coastal ocean forecast system was com-
prised of a three-dimensional ocean circulation model, the
Regional Ocean Modeling System (ROMS), forced with
predicted atmospheric marine boundary layer conditions
from the U.S. Navy’s Coupled Ocean Atmosphere Meso-
scale Prediction System (COAMPS) model operated in a
multiply nested configuration to produce very high resolu-
tion forecasts for the New Jersey coast. Simple yet practical
data assimilation schemes were used to reinitialize the
ocean model prior to each forecast cycle using data
available in real time from a distributed observing network
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of coastal radar and vessels equipped with ship-to-shore
radio modems for the telemetry of towed-body subsurface
observations.

2.1. Regional Ocean Modeling System (ROMS) Ocean
Model Configuration

[5] ROMS is a free-surface primitive equation ocean
model being used by a broad community for applications
from the basin to coastal and estuarine scales [e.g.,
Haidvogel et al., 2000;Marchesiello et al., 2003; Lutjeharms
et al., 2003; Peliz et al., 2003; Dinniman et al., 2003;
MacCready and Geyer, 2001]. Shchepetkin and McWilliams
[1998, 2003, 2005] describe in detail the algorithms that
comprise the ROMS computational kernel. These include
careful formulation of the time-stepping algorithm to allow
both exact conservation and constancy preservation for
tracers, while achieving enhanced stability and accuracy in
coastal applications where the free surface displacement is a
significant fraction of the total water depth. Conservative
parabolic-spline discretization in the vertical reduces the
pressure gradient truncation error that has previously
plagued terrain-following coordinate models. Present ROMS
features are summarized briefly in Figure 1, though not all
these features were implemented at the time of the LEO
CPSE forecasting.
[6] The model domain covers the New York Bight and

New Jersey shelf (Figure 2). The curvilinear boundary-fitted
grid has an average resolution of 1 km, with enhanced grid
resolution of approximately 300 m in the vicinity of the
30 km by 30 km LEO intensive observing area adjacent to
the Rutgers University Marine Field Station (RUMFS) at
Tuckerton, New Jersey. The bathymetry is from the National
Geophysical Data Center 3-arc-second Coastal Relief
Model smoothed with two passes of a Shapiro filter to
remove wavelengths on the order of the grid scale. Beyond
the shelf break, in the southeast corner of the domain,
depths greater than 100 m are truncated to 100 m to reduce
the CFL constraint on model time step since the focus of the
study was locally wind-forced variability near the coast in
the LEO vicinity. Tidal sea level and depth average velocity
variability were imposed at the domain perimeter using the
seven most significant harmonics (M2, N2, S2, K1, O1, M4,
M6) from an ADCIRC model simulation of the western
Atlantic [Luettich et al., 1992]. The predominant tide
component, M2, enters the New Jersey Bight as a plane

wave perpendicular to the shelf break. Consequences of
truncating the model bathymetry for computational conve-
nience are that (1) the tidal energy flux is underestimated by
approximately a factor of four in the southeast corner of the
domain and (2) the reduced wave speed in shallower water
introduces a phase error of about 30 min. Observed tidal
velocities in the LEO region are of order 5 cm s�1 [Chant et
al., 2004] which is a factor of five less than typical wind-
driven currents at LEO. Given the dominance of wind-
driven variability over tidal forcing at LEO, we consider
inaccuracies in the modeled tides are not a serious limitation
for the purposes of the present study.

Figure 1. Regional Ocean Modeling System (ROMS) model features.

Figure 2. ROMS Long-term Ecosystem Observatory
(LEO) model grid and bathymetry.
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[7] Outflow Orlanski-type radiation conditions
[Marchesiello et al., 2001] were applied at the open
boundaries to active tracers (temperature and salt) and the
nontidal component of velocity. These conditions allow
waves generated within the model to exit the domain with
few open boundary artifacts, especially given the 1 month
duration of the simulations. Given our focus on locally
forced inner shelf wind-driven upwelling, open boundary
conditions that would impose the weak southwestward mean
flow of the outer Mid-Atlantic Bight were not incorporated.
[8] Air-sea fluxes of momentum and heat were computed

using standard bulk formulae [Fairall et al., 1996] applied
to the modeled sea surface temperature and atmospheric
marine boundary values (10 m wind, sea level air temper-
ature, pressure and relative humidity) from two U.S. Navy
atmospheric forecast products. These were the operational
27 km resolution West Atlantic region COAMPS forecast
[Hodur et al., 2002] (nested within the Navy Operational
Global Atmosphere Prediction System (NOGAPS) global
forecast), and an experimental 6 km resolution COAMPS
forecast further nested within the 27 km domain. A com-
parison of these forecasts with independent meteorological
observations at RUMFS shows that the 6 km resolution
COAMPS achieved a high degree of forecast skill during
the CPSE period [Bowers et al., 2002]. In the results
presented here, 6 km COAMPS data at 30 min intervals
were used in all simulations.

[9] During 2001, ROMS forecasts were run with two
vertical turbulence closure schemes: the k profile parame-
terization (KPP) [Large et al., 1994; Durski et al., 2004],
and Mellor-Yamada 2.5 (MY) [Mellor and Yamada, 1982].
Benthic boundary layer dynamics were parameterized
according to the wave current interaction model of Keen
and Glenn [1995] with an assumed July climatological
wave field propagating onshore normal to the shelf break
with significant wave period of 10 s and amplitude 0.3 m.

2.2. Assimilation Data Sets and Methods

[10] Real-time data were available at LEO during each of
the annual Coastal Predictive Skill Experiments from 1998
to 2001. In 2001, the observational network achieved its
most comprehensive deployment. Data sets collected in-
cluded satellite-derived sea surface temperatures, a nested
grid of high-frequency radar-derived (CODAR) surface
currents from a long-range (LR) regional array and a
high-resolution (HR) local array [Kohut et al., 2004], and
temperature and salinity profiles from a CTD deployed by
undulating shipboard towed-body along a standard set of
transects (Figure 3).
[11] Kohut et al. [2004] and references therein describe

the LEO CODAR system in detail. The CODAR instrument
exploits radio wave backscatter from surface gravity waves
to measure ocean surface current in the upper meter of the
water column in the direction of the radar beam. Radial

Figure 3. (a) Long-range and (b) high-resolution coastal radar (CODAR) surface currents during the
downwelling event of 18 July 2001, respectively. (c) Towed-body transect lines occupied by R/V Mighty
Caleta denoted S4, S2, A, N2, and N4. Conductivity-temperature-depth (CTD) data from approximately
four transects could be completed on any day for assimilation in the forecast model. Coastal Ocean
Observation Laboratory (COOL)-1 (node) through six thermistor and acoustic Doppler current profiler
(ADCP) moorings used for model validation were placed along the A line. Shading and contours show
bathymetry. The box in Figure 2a denotes the area depicted in Figures 2b and 2c.
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components of the current from two receiver sites along the
New Jersey coast are combined into total surface velocity
maps for analysis and assimilation.
[12] At the time of the 2001 CPSE study, the two data

assimilation techniques that were available to implement
practically in ROMS given the operational constraints of a
3 day forecast cycle were nudging, and simple suboptimal
intermittent melding [Dombrowsky and De Mey, 1992]. The
temperature and velocity data were assimilated in the form
of three-dimensional analyses mapped to the model grid.
This mapping step, and the associated forecast and data
error covariance estimation procedure, are described in
subsequent sections.
[13] In the three years since the 2001 field season tangent

linear and adjoint codes [Moore et al., 2004] have been
written for ROMS. These codes underpin variational assim-
ilation methods being formulated as part of follow-on
projects from the CPSE program, but the results presented
here will be confined to the operational intermittent assim-
ilation system available for applications in 2001.

2.3. Validation Data Sets

[14] In 2001, the Rutgers Coastal Ocean Observing Lab-
oratory (COOL) augmented the real-time instrumentation
by deploying a cross-shelf array of six moorings at 4 km
spacing along the central line through the LEO intensive
observing area (Figure 3). Each mooring comprised a
thermistor string and a bottom-mounted ADCP. Thermistors
were placed every 0.3 m in the vertical at COOL-1, and
every 1 m at COOL-2 through COOL-5. COOL-1 was
deployed alongside the LEO Node ADCP. COOL-6 was a
bio-optical mooring [Chang et al., 2002]. These instruments
did not telemeter data, and did not enter the data stream
used for assimilation in ROMS. They therefore represent a
withheld data set suited to evaluating the model skill at
forecasting the vertical stratification and across-shelf loca-

tion of upwelling and downwelling fronts and their associ-
ated currents.
[15] We describe here the general character of the moor-

ing time series data, and the circulation events they portray,
prior to introducing the model skill metrics developed to
focus on the essentially two-layer upwelling/downwelling
dynamics that represent the principal mode of variability at
LEO on timescales of a few to several days.
[16] Time series of temperature and detided cross-shelf

and alongshelf velocity are shown in Figure 4 for COOL-2
and COOL-5. Offshore at COOL-5, a persistent sharp
thermocline is found between 8 and 16 m depth. Near shore
at COOL-2, the two-layer system responds to the winds by
alternating between downwelling and upwelling regimes.
On three occasions during the observation period, down-
welling was sufficiently strong that the downwelling front
moved seaward of COOL-2, forming a zone near the coast
of weakly stratified warm water. Only for brief periods
during this deployment were upwelling winds persistent
enough to move the upwelling front seaward of COOL-2,
producing the complementary situation of uniform cool
waters from surface to seafloor. Low-pass filtered cross-
shelf velocities show a pronounced baroclinic response at
COOL-5 throughout the deployment, and at COOL-2 when
two layers are present. Alongshelf velocities are predomi-
nantly barotropic at both sites, with the least vertical
variation inshore at COOL-2.

3. Operational Forecasting Procedure

[17] During the 2001 CPSE period, ensembles of 3 day
ocean forecasts were produced using both high- and
low-resolution COAMPS atmospheric forecasts, and both
vertical turbulence closure options. The Coastal Ocean
Observing Laboratory (COOL) science team evaluated
these forecasts qualitatively during twice weekly ‘‘briefing

Figure 4. Time series of detided temperature and velocity at COOL-2 and COOL-5. Cross-shore
velocity is positive toward the southeast. Alongshore velocity is positive toward the northeast.
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sessions’’ at RUMFS at which a consensus was formulated
on which of the standard towed-body survey lines would
yield data of greatest value for initializing the model
forecast for the subsequent 3 day cycle, while also meeting
the requirements of bio-optical, ecosystem and ocean
physics sampling within operational constraints. This typ-
ically led to targeting lines that would be upstream of the
central mooring line. The real-time forecast system was
implemented as follows.

3.1. Initial Conditions

[18] In June 2001, a research cruise by the R/V Endeavor
conducted a survey of the New Jersey Bight region,
occupying stations along 7 sections perpendicular to the
coast from Sandy Hook to Cape May, out to some 80 km
offshore. These stations showed a consistent pattern of
typical late spring conditions in this region; namely, an
approximately 10-m-deep mixed layer of water near 20�C,
laying over cool 10�C water near shore, but cooler 6�C
water offshore. These data defined a typical vertical tem-
perature profile indicative of near shore stratification con-
ditions that was used to initialize the model on 1 July 2001.
The initial velocity and sea level height were set to zero. At
first, the 6 km COAMPS data were unavailable and ROMS
was driven with outputs from NOGAPS for 9 days. The
temperature solution at 9 July 2001, with sea surface
temperature values reset from a 7 day satellite composite,
became the starting point for the first ROMS assimilation
cycle.

3.2. Forecast and Assimilation Cycle

3.2.1. Temperature and Salinity
[19] Each 3 day forecast proceeded in the following steps.

The preceding forecast cycle was considered an a priori
estimate of the ocean state, ff, where f can be any model
variable (temperature, salinity etc.). The difference between
ff and observations fdata gathered during the cycle was
mapped to the model grid using optimal interpolation at
daily intervals. The mapped adjustment is given by f0 =
CA�1 (fdata � ff) where matrix C is the covariance of each
model grid point with each observation location and time,
and A is the covariance of the observations with each other
[see, e.g., McIntosh, 1990; Daley, 1991]. A Gaussian
covariance function was assumed with scales of 50 km
and 2 days. The ratio of observational error to signal
variance that augments the diagonal of A was set constant
at 10�2. The gridded observations are then f� = ff + f0, and
have normalized expected error variance, eo

2, given by
diag(I � CA�1CT) where I is the identity matrix [McIntosh,
1990]. In regions of the model domain several covariance
length scales distant from any data, the adjustment f0 ! 0;
the model state (ff) is retained and eo

2 ! 1. Close to
observation locations, the data supplant the model forecast
in proportion to the model-observation mismatch and the
chosen covariance scales; eo

2 is small. The model was then
restarted from the beginning of the previous forecast, with
the daily optimally interpolated gridded data fields for
temperature and salinity assimilated over 3 days by one of
two methods: ‘‘nudging’’ or ‘‘melding.’’
[20] In the case of nudging, the model solution is

pushed toward the mapped data on every time step with
a right-hand-side term proportional to l(fo � ff), where l =

(1 � eo
2)/tn is a nudging inverse timescale 1/tn down

weighted by the expected error. The timescale adopted
was tn = 7 days for both temperature and salinity.
[21] The melding assimilation follows the method of

Dombrowsky and De Mey [1992], which, in common with
optimal interpolation, is founded on Gauss-Markov theory.
At the times corresponding to the fomaps, a weighted sum of
observations and forecast is computed as fa = mfo + (1 � m)
ff. The weights given by m = (ef

2 � gefeo)/(eo
2 + ef

2 � 2gefeo)
are optimal in the sense that the ‘‘analysis’’ estimate fa has
the minimum expected mean squared error for the assumed
error variance of observations and forecast. The model
is reinitialized with fa and the integration proceeds. We
take g = 0.01 for the correlation between model and
observations. (See Dombrowsky and De Mey [1992] for a
discussion of the role of this parameter.) At each melding
reinitialization, the forecast error is reset to the analysis error,
ea
2 = ef

2eo
2(1 � g)/(eo

2 + ef
2 � 2gefeo). In the absence of any

experience evaluating the forecast skill of the model at the
time of the 2001 CPSE, we assumed that the model error, ef

2,
grew exponentially with a timescale of 10 days.
[22] At the conclusion of the assimilation period (whether

it be by nudging or melding), the previous forecast has been
adjusted to reflect the observations acquired, and this new
hindcast state becomes the initial condition for the next
ocean forecast cycle forced with the new 3 day atmospheric
prediction.
3.2.2. Coastal Radar (CODAR) Surface Currents
[23] Both the nudging and melding assimilation ap-

proaches can equally well be applied to CODAR observa-
tions of surface velocity. However, in practice, such simple
schemes require that surface current observations should be
projected vertically to other depths if at all possible.
CODAR observations could be assimilated into only the
surfacemost level of the model by nudging or melding, but
this risks introducing significant vertical shear in the hori-
zontal velocity which the model physics interprets as
demanding enhanced vertical mixing due to a diminished
Richardson number.
[24] In July 2001, long-range (LR) CODAR data became

available shortly before commencing operational forecast-
ing on 11 July, whereas the high-resolution (HR) CODAR
system had been operating for 2 years. A decision was made
at the time to use 3 hourly averaged LR-CODAR and 1
hourly averaged HR-CODAR velocities (e.g., Figure 3),
extrapolated vertically using a simple exponential function,
to generate depth-varying horizontal velocity analyses for
assimilation in ROMS. This simplistic CODAR processing
was subsequently found to be inadequate in several
respects, adversely impacting the forecast skill. A modified
subsurface projection scheme based on correlations between
CODAR and the moored ADCP data has been formulated.
We have elected to present model results here that use this
alternative scheme, even though this was not the data
processing procedure used operationally in 2001. To do
otherwise would unfairly cast the CODAR data as being of
little value, whereas we show in the next section that even a
straightforward statistically based vertical extrapolation of
surface CODAR observations has significant skill at esti-
mating subsurface velocity in the LEO region, and CODAR
data offer considerable promise for incorporation into
coastal ocean data assimilation forecast systems.
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[25] Empirical orthogonal functions (EOF) of velocity
variability at the ADCP moorings COOL-2 through 5 all
show similar vertical structure (Figure 5). For the first EOF
(typically 51% of variance), the decreasing magnitude and
the rotation of flow direction with depth are consistent with
a bottom friction dominated boundary layer [Munchow and
Chant, 2000]. The second EOF shows a phase difference of
180� between surface and bottom in accordance with a
simple two-layer upwelling or downwelling response. Re-
gression fits of the CODAR surface velocity to the EOF-1
amplitude time series also give similar coefficients at all
ADCP sites, with a mean value of 0.65 exp(�i 9.7p/180)
(Table 1). The common pattern across all moorings allows
us to hypothesize a consistent relationship predicting the
complex velocity at any depth solely from CODAR and the
EOF-1 structure:

u zð Þ þ iv zð Þ ¼ cuU* zð Þ uþ ivð ÞCODAR; ð1Þ

where cu is the mean correlation coefficient (Table 1) and
U*(z) is the mean EOF-1 structure (heavy line in Figure 5).
[26] To illustrate the skill of this projection scheme,

Figure 6 compares the observed ADCP velocity at
COOL-5 to the estimate based solely on CODAR projected
with the regression relation given above. The error is
typically much less than the variability, even near the
seafloor.
[27] In practice, we use equation (1) to produce a three-

dimensionally gridded horizontal velocity data set (i.e., for
fo above corresponding to velocity components u and v)
after first interpolating CODAR velocities to the model
horizontal grid points. To complete this formulation for
the purposes of data assimilation, the expected error of the
inferred subsurface velocity components is required to
define eo

2. We estimate this from the mean squared error
of the projected velocity (equation (1)) compared to that
observed by ADCP, as a function of depth (Figures 6c
and 7). When normalized by the signal variance, surface

values near 0.2 indicate that CODAR captures 80% of the
velocity variability. Near the seafloor, the expected skill of
the subsurface projection is still significant but falls to about
40%.

4. Forecast System Results

4.1. Bottom Temperatures

[28] Owing to the strong stratification that occurs at LEO
during summer (Figure 4), the cross-shore movement of
waters in response to wind forcing can be seen clearly in a
Hovmoeller (distance-time) diagram of the bottom temper-
ature along the COOL mooring line (Figure 8a). During
downwelling, the thermocline intersects the seafloor and
warm waters spread seaward, whereas upwelling is charac-
terized by the return shoreward of cooler bottom waters.
A distinct thermocline front persists throughout these
transitions.
[29] Figures 8b and 8c shows the corresponding modeled

bottom temperatures when the forecast system is run with-
out assimilation (henceforth denoted experiment 0), and
with towed-body CTD data included by melding (experi-
ment 1a). CODAR data were not used in these cases, and
the vertical turbulence closure was KPP. Qualitatively, both

Figure 5. Empirical orthogonal functions (EOFs) of velocity variability from four Coastal Ocean
Observation Laboratory (COOL) ADCPs deployed during July 2001 LEO Coastal Predictive Skill
Experiment.

Table 1. Regression Coefficients for Coastal Radar (CODAR)

Versus Acoustic Doppler Current Profiler (ADCP) Empirical

Orthogonal Function (EOF)-1 Velocitya

ADCP Site

ADCP EOF-1 Versus CODAR Regression
Coefficient, cu

Magnitude Angle, deg

COOL-2 0.69 �9.6
COOL-3 0.65 �14.0
COOL-4 0.70 �3.2
COOL-5 0.65 �11.9
Mean 0.67 �9.7
aNegative angles indicate the surface velocity is to the right of CODAR.
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forecasts track the observed bottom temperature well, but
the result is better with data assimilation. Melding events,
when the model state is essentially reset to match the
available observations, produce abrupt changes in the solu-
tion in several instances. The melding steps occur at
irregular intervals because of the weather dependence of
operating a towed-body from the small coastal vessel R/V

Mighty Caleta. Nevertheless, even during the protracted
data gap from 25 to 28 July, the solution with assimilation
performed better than that without. With assimilation, the
model correctly cooled due to upwelling whereas without
assimilation the solution is too warm. Observed cooling
events on 31 July and 5 August are similarly forecast better
when the model assimilates CTD data.

Figure 6. (a) Alongshore component of current observed by COOL-5 ADCP as a function of depth
and time. (b) Alongshore current at COOL-5 estimated using surface current from HR-CODAR and
equation (1). (c) Error of the vertical projection scheme of Figure 5a minus Figure 5b.

Figure 7. (left) Time-averaged error variance of subsurface projection (Figure c) at the COOL-2
through COOL-5 mooring sites. (right) Error variance normalized by signal variance. An average of the
four e2/s2 curves was used to define the normalized data error variance eo

2 used in the assimilation
schemes.
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[30] The overall correspondence between observations
and experiment 0 suggests that the ocean model has
significant intrinsic skill, while the comparison to experi-
ment 1a indicates that data assimilation can improve the
forecast. These qualitative results are explored further in the
next section.

4.2. Temperature and Transport Validation Metrics

[31] To introduce rigor into the comparison of mooring
observations and forecasts, a set of quantitative model
evaluation metrics were developed based on a two-layer
interpretation of the circulation. The boundary between the
two layers was deemed to be where the vertical temperature
gradient is a maximum. With this definition, surface,
average upper-layer, and average lower-layer temperatures
can be calculated for both mooring and model profiles. We
also compute the difference in cross-shore transport inte-
grated over each layer which we denote the ‘‘baroclinic
transport’’ associated with the two-layer circulation. To
complete the metric set, we calculate the depth integrated
alongshore transport as an indicator of the strength of the
coastal jet associated with upwelling and downwelling.
Time series of these metrics from the mooring data at
COOL-3 are compared to experiments 0, 1a and 1b (as
for experiment 1a but with MY25 turbulence closure) in
Figure 9. The squared coherence of experiments 0 and 1a
with the data is plotted in Figure 10.
[32] The modeled thermocline depth is initially too great

and surface temperatures are too warm, indicating an
imperfect initial condition. In all model configurations, the
thermocline depth comparison improves by 16 July, but sea
surface temperatures for experiment 1a do not approach
agreement until the downwelling event of 19 July begins.
Experiment 1b never captures SST well.

[33] Despite the cool bias in forecast upper-layer temper-
ature that lingers from the poor initial condition, SST
variability is coherent with observations across all frequen-
cies for both experiment 0 and 1a (Figure 10). This likely
results from the considerable skill in the 6 km resolution
COAMPS atmospheric forecast being carried through to the
air-sea heat fluxes that drive the high-frequency variability
that dominates the variance in surface temperature. Inter-
estingly, the model with assimilation generally produces
SST variability that is less coherent with observations. This
is probably due to modeled diurnal and other high-frequency
temperature variability close to the sea surface being upset
by melding with 2 day average (the optimal interpolation
covariance timescale) towed-body CTD data. In this situa-
tion, the expected error eo

2 of the gridded CTD data is
effectively underestimated relative to the expected error ef

2

of the model forecast, thereby giving the surface tempera-
ture observations undue weight (m) in the melding steps.
This interpretation is supported by the result that the upper-
layer average temperature metric does show improved
coherence when data are assimilated, which suggests that
by considering more of the water depth than that affected
directly by diurnal heating, the relative magnitude of data
and model errors is better estimated and the intermittent
melding approach achieves a useful outcome.
[34] Lower-layer temperatures agree better for experiment

1a than 1b, except during the strong downwelling event
when experiment 1a sees the return of the thermocline on
21 July while in reality the COOL-3 site is flooded with
nearly isothermal warm waters for four days. Inspection of
Figure 8 shows that in experiment 1a the across-shore
movement of the foot of the downwelling front barely
reaches the COOL-3 location (11.7 km from shore) on
20 July. With the exception of the thermocline depth during

Figure 8. Seafloor temperature along the central mooring line as a function of time. (a) Observed at
moorings 2–5. Forecast using (b) no assimilation and (c) intermittent melding to assimilate towed-body
CTD observations. No CODAR data were used in these cases. The marks in Figure 7c indicate times at
which sufficient data were available to produce a useful gridded data set for assimilation.
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the 19–24 July downwelling, the MY25 turbulence scheme
shows poorer agreement with data than KPP, and we will
focus on the KPP closure in subsequent analysis of the
forecast system performance.

[35] The thermocline depth, defined as where @T/@z is a
maximum, can be discontinuous in time and so leads to
some noisiness in the temperature metrics. (Since the
thermocline depth is not formally differentiable in time
and can be multivalued, it is omitted from the coherence
plots.) However, vertical shear in the cross-shore circulation
leads to weak velocities at the layer interface so the cross-

Figure 9. Time series of observed and forecast two-layer
metrics at the COOL-3 mooring site. Forecasts shown are
with no assimilation (experiment 0) and temperature
assimilation with KPP (experiment 1a) and MY25 (experi-
ment 1b) vertical mixing. (a) Depth of maximum tempera-
ture gradient. (b) Sea surface temperature. (c) Average
upper-layer temperature. (d) Average lower-layer tempera-
ture. (e) Baroclinic upper-layer across-shore transport
(positive offshore). (f) Depth-integrated alongshore
transport.

Figure 10. Squared coherence of observed metrics with
experiment 0 (no assimilation), experiment 1a (assimilation
of towed CTD), and experiment 5 (assimilation of towed
CTD and HR-CODAR) at COOL-3 mooring site. The
dashed line shows the 95% significance limit.
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shore baroclinic transport is less susceptible to uncertainty
in the interface location, and much less noisy. Figure 9
shows that both cross-shore and alongshore transports agree
well from the very beginning of the forecast, suggesting the
essential features of the momentum balance have been
modeled well by the forecast system. The transport metrics
were found to be largely insensitive to the choice of vertical
turbulence closure.

5. Data Assimilation System Sensitivity

[36] The forecast system comprises multiple data sets
(temperature, HR and LR CODAR) and assimilation
options (melding and nudging), and prompts the question:
Does a certain combination of data and methods give
consistently superior performance as measured by the
model skill metrics? To address this, we conducted a suite
of hindcast simulations that systematically varied the model
configuration options to consider assimilation of towed-
body CTD observations by melding (experiments 1a, 3, 4,
5, 6) or nudging (experiments 2, 7), assimilation of HR-
CODAR only (experiments 5, 6), or HR and LR-CODAR
combined (experiments 2, 3, 4), with the CODAR assimi-
lation method being melding (experiments 4, 5), nudging
(experiments 2, 3, 6) or no CODAR assimilation at all
(experiments 1a, 7). These options are summarized in
Table 2.
[37] The summary model skill statistic we present is the

mean squared error (MSE) [e.g., Oke et al., 2002a] of the
time series of modeled (mi) and observed (oi) metrics:

MSE ¼ 1

n

Xn

i¼1

mi � oið Þ2;

where n is the number of values in the hindcast time
interval. The MSE for the layer average temperature and
transport metrics at each COOL mooring, and the average
over all moorings for each experiment, are given in Table 3.
The lowest MSE for each metric is highlighted. No single
configuration performs best for all metrics, though some
consistent patterns emerge.
[38] As expected from the discussion above, experiment 0

(no assimilation) scores best on average over all moorings
for the simulation of upper-layer temperature. Experiment 5
assimilates HR-CODAR and CTD data by melding, scoring

best in the average over all moorings in terms of lower-layer
temperature and alongshore transport (equal with experi-
ment 0), and second best on the other two metrics. Com-
pared to experiment 1a, experiment 5 has lower average
MSE for all four metrics indicating that the assimilation
of HR-CODAR by melding consistently improves
performance. Overall, we consider experiment 5 the best
configuration.
[39] Results for the SST metric are not tabulated but tell

essentially the same story as upper-layer temperature (ULT).
The three lowest mean MSE of 0.020, 0.025 and 0.03 for
experiments 7, 0 and 1a, respectively, are virtually equal.
Experiment 5 is next (MSE = 0.07) with the other config-
urations in the same order of increasing MSE as for ULT. As
noted above, SST variability is coherent across all frequen-
cies, but the MSE metric for SST is dominated in most cases
by a low-frequency cool bias.
[40] While the merits of melding over nudging are clear

for HR-CODAR (the MSE for all metrics in experiment 5 is

Table 2. Summary of Hindcast Experimentsa

Experiment
CODAR
Data Used

CODAR Assimilation
Method

CTD Assimilation
Method

0 � � � � � � � � �
1a � � � � � � melding

2 HR + LR nudging nudging
3 HR + LR nudging melding
4 HR + LR melding melding
5 HR melding melding
6 HR nudging melding
7 � � � � � � nudging

aHR denotes high-resolution CODAR data only, and HR + LR denotes
that long-range CODAR was also included. CTD refers to subsurface
gridded temperature and salinity observations made from the towed-body
profiler.

Table 3. Mean Squared Error (MSE) of the Layer Temperature

and Transport Metrics for the Data Assimilation Sensitivity

Experimentsa

Experiment

Mooring

Mean2 3 4 5

Lower-Layer Temperature, �C2

0 1.02 0.43 0.93 0.52 0.73
1a 0.32 0.03 0.51 0.54 0.35
2 0.64 0.16 0.70 0.37 0.47
3 0.26 0.08 0.67 0.73 0.43
4 1.27 2.11 3.54 3.34 2.57
5 0.15 0.06 0.40 0.27 0.22
6 0.60 0.29 0.85 0.71 0.61
7 0.84 0.24 0.70 0.48 0.57

Upper-Layer Temperature, �C2

0 0.01 0.001 0.004 0.001 0.004
1a 0.15 0.28 0.001 0.05 0.12
2 0.03 0 0.04 0.007 0.02
3 0.06 0.05 0.001 0.001 0.03
4 0.76 0.87 0.63 0.70 0.74
5 0.02 0.02 0.02 0.02 0.02
6 0.42 0.52 0.41 0.51 0.46
7 0.04 0 0.02 0.001 0.01

Alongshore Barotropic Transport, m4 s�2

0 0 0.14 0.49 0.19 0.20
1a 0.015 0.15 0.74 0.48 0.34
2 0.027 0.30 0.64 0.28 0.31
3 0.015 0.43 0.87 0.44 0.44
4 0.005 0.16 0.62 0.24 0.26
5 0.018 0.22 0.43 0.13 0.20
6 0.044 0.39 0.76 0.31 0.37
7 0.001 0.17 0.66 0.28 0.28

Across-Shore Baroclinic Transport, 10�3 m4 s�2

0 0.82 6.0 4.0 2.2 3.2
1a 0 0.05 12.2 0.18 3.1
2 0.18 3.7 2.2 4.8 2.7
3 0.25 2.8 2.5 5.8 2.8
4 0.37 0.8 11.8 0.42 3.4
5 0.15 4.0 2.9 4.1 2.8
6 0.27 3.4 2.2 9.2 3.7
7 0.31 3.8 5.2 3.7 3.3

aResults are tabulated for each mooring and for the mean over four
moorings. The lowest MSE in each column is in boldface. See Table 2 for
experiment options.
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less than in experiment 6), the better method for CTD data
assimilation is not readily evident. If we eliminate the
possibly confounding role of simultaneously assimilating
CODAR data, so compare only experiments 0, 1a and 7, we
see that both methods improve the forecast skill of the
bottom layer temperature, with melding again performing
best. Neither method makes an appreciable difference to the
across-shore transport. The alongshore transport loses skill
when temperature data only are assimilated, but with this
loss being less pronounced in the case of nudging.
[41] The coherence of observed and modeled metrics for

experiments 1a and 5 are compared in Figure 10. Assimi-
lation of temperature data significantly increases the coher-
ence of cross-shore transport at low frequencies compared
to experiment 0. The introduction of HR-CODAR assimi-
lation further expands the coherence to all resolved frequen-
cies. For alongshore transport, assimilation increases the
maximum coherent frequency from 2 cycles d�1 to
3.4 cycles d�1 (7 hour period). Some coherence in the
upper-layer temperature variability is also recovered in
experiment 5 at around 4 to 6 hour periods. Two hours
would be the shortest period resolvable by the hourly
assimilation interval for HR-CODAR, so there is some
potential utility in assimilating such high-frequency data.
[42] The addition of long-range CODAR, however, does

not bring further overall improvement. The MSE in along-
shore transport decreases in experiments 3 and 4 compared
to experiment 1a, but the lower-layer temperature error
increases. Assimilation of LR-CODAR by melding, in
particular, gives very poor performance for the temperature
metrics. Since the lower-layer temperature is controlled
primarily by advection associated with the two-layer circu-
lation, the inclusion of LR-CODAR must upset the modeled
transport pathway for the lower layer and cause water to be
drawn from a source region with different temperatures.
This suggests our vertical projection of CODAR velocities
to the lower layer is not valid beyond the immediate
environs of the relatively shallow LEO region. This is
hardly surprising because the projection uses the vertical
profile of the first EOF of the ADCP data, which is
orthogonal to the second EOF that exhibits a two-layer
pattern (Figure 5b). Formally speaking, the error is not so
much with the projection scheme itself but more that the
expected error of the projection is underestimated and
CODAR is given undue weight in deep water. This result
is not inconsistent with the reduced alongshore transport
error because EOF-1 captures most of the depth-integrated
flow, and the depth integral of EOF-2 is almost zero.
[43] However, how can it be that our assimilation scheme

adds skill for HR-CODAR if it uses the same, potentially
flawed, vertical projection? There are two considerations
here.
[44] The first is that near the coast in an approximately

two-dimensional upwelling circulation the flow is predom-
inantly parallel to shore (the coastal jet) and alongshore
temperature gradients dominate the lateral divergence of
heat. This is especially so inshore of the front. Velocities in
the LEO region typically persist at about 10 cm s�1 for the
duration of an individual upwelling or downwelling event.
Over the 3 day forecast cycle, this speed would draw water
from 25 km away, which is roughly the coverage of the HR-
CODAR but also the range from the COOL mooring line to

the furthest towed-body CTD transects (Figure 3). Within
the scope of the HR-CODAR then, there are CTD data
available for assimilation so that the temperature field is
adjusted to agree with observations. Accordingly, the dom-
inant features of the temperature and velocity, and therefore
lateral heat advection, are usefully constrained by the
combined data assimilation.
[45] Secondly, beyond the nearshore region of an upwell-

ing front and coastal jet at LEO, Chant et al. [2004] find the
circulation is strongly three-dimensional, contributing sig-
nificantly to the cross-shore divergence of heat, while Kohut
et al. [2004] emphasize that stratification decreases the
vertical correlation of currents. In this region of the forecast
model, surface LR-CODAR observations were weakly, but
erroneously, projected to the lower layer, which will incline
the model to draw upwelled water from the wrong region.
[46] Furthermore, in the CPSE program this region was

largely outside the scope of CTD sampling by the R/V
Mighty Caleta, and any departures of the model temperature
from reality were unconstrained by observations. In this
situation, even a perfect velocity field achieved with more
skillful assimilation of LR-CODAR would be prone to
errors if there is no mechanism to correct a far field bias
in the temperature.
[47] We conclude, therefore, that beyond the central LEO

observing area an inappropriate vertical projection of
CODAR and the lack of in situ observations to constrain
the model temperature field combine to negatively impact
the simulated heat transport and degrade the temperature
metrics when LR-CODAR was used. However, this is not to
say that CODAR data are not useful for constraining
simulated currents in this model. Our statistical vertical
projection was determined locally from ADCP data in the
central LEO region, and in this region the assimilation of
HR-CODAR added skill. Evidently, a different projection is
required elsewhere in the LEO model domain.
[48] Some alternative methods have been tested by other

investigators. Paduan and Shulman [2004] used with suc-
cess a vertical projection based on Ekman theory to assim-
ilate CODAR data in a model of Monterey Canyon, a deep
region beyond the shelf break that, unlike the New Jersey
Bight, does not have overlapping surface and bottom
boundary layers. In a model of subtidal frequency current
variability in water depths of 50 to 200 m on the Oregon
shelf, Oke et al. [2002b] used inhomogeneous anisotropic
covariance patterns derived from an ensemble of forward
model runs to distribute corrections horizontally and verti-
cally throughout the model domain using the Physical-space
Statistical Analysis System (PSAS) of Cohn et al. [1998].
This approach could be applied in the LEO setting if it
proved valid to assume the covariance patterns are station-
ary in time, and provided the method could be adapted to
accommodate higher-frequency tidal and inertial variability
on a broad, shallow shelf. A further alternative is the four-
dimensional variational method [e.g., Moore et al., 2004]
which uses the adjoint of the forecast model to determine
patterns of space and time covariance.

6. Forecast System Design

[49] The melding and nudging approaches adjust the
model state only at times and places coinciding with
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available data, with some extrapolation embodied in (1) the
covariance scales adopted for the gridding of temperature
and salinity data (	50 km) and (2) the vertical projection of
CODAR. In this strongly advection-dominated flow regime,
the transport of water from beyond the scope of the
observational network (25 km) in a forecast cycle (3 days)
frequently occurs. Unless these waters have some memory
from earlier cycles (i.e., they previously passed through the
observational area and were subject to nudging or melding),
their properties are unconstrained by assimilation and their
temperature and salinity will depend on initial and boundary
conditions, surface fluxes, and the skill of the forecast
model. It was shown that the forecast model has useful
intrinsic skill, but that the initial conditions were imperfect.
Without validation data beyond the central mooring line, it
is difficult to say whether the modeled circulation achieves
the skill demanded for analysis of ecosystem and bio-optical
properties that respond to longer timescales and space scales
associated with transport from beyond the LEO intensive
observing region.
[50] To meet these demands, the in situ sampling program

would need to extend beyond the central LEO region to a
range that fully encompasses the water masses that are
likely to enter the region of interest on the subsequent
forecast cycle. This would be some 60 km at least from
the COOL mooring sites, and beyond the adaptive sampling
capabilities (range and weather dependence) of a single
small coastal vessel. Fleets of autonomous underwater
gliders of the type prototyped during 1999–2001 CPSEs
are more suited to the task of gathering the broad spatial
scale in situ temperature and salinity data required for such
a coastal predictive system. Glider fleets are less weather-
dependent, able to cover a greater spatial domain, yet profile
through the vertical stratification and across horizontal
fronts.

7. Conclusions

[51] The LEO Coastal Predictive Skill Experiments pro-
vided a well-sampled ocean environment in which to
evaluate a coastal ocean forecast system for a strongly
stratified, predominantly two-layer, system with alongshore
barotropic and cross-shore baroclinic transport driven by
local winds.
[52] The forecast system developed employed the circu-

lation model ROMS in conjunction with simple data assim-
ilation methods that utilized surface current observations
from HF radar (CODAR) systems and real-time in situ
temperature and salinity data from a towed-body CTD.
Forecast evaluation was in terms of a set of metric time
series designed to characterize the predominant aspects of
the two-layer circulation: upper- and lower-layer average
temperatures, alongshore barotropic transport, and baro-
clinic cross-shelf exchange transport.
[53] The forecast model, without assimilation, had con-

siderable skill at reproducing temperature and current var-
iability observed by a cross-shelf array of validation
moorings at the center of the LEO intensive observing area,
but this skill could be further improved with data assimila-
tion. Of the data assimilation configurations tested, that with
the greatest skill used intermittent melding [Dombrowsky
and De Mey, 1992] of temperature and high-resolution

CODAR. Melding clearly performed best for assimilating
HR-CODAR, but it was less clear whether nudging or
melding is preferred for incorporating subsurface tempera-
ture and salinity data acquired by towed-body CTD.
[54] Forecast SST was coherent with observations at all

frequencies. Upper- and lower-layer average temperatures
were coherent at frequencies up to 1.5 cycles d�1. Transport
time series were forecast better, with alongshore transport
typically being coherent up to 3 cycles d�1. The introduc-
tion of HR-CODAR greatly extended the coherence of
forecast cross-shore baroclinic transport.
[55] It is our conjecture that melding, which reinitializes

the model state at intermittent intervals, allows the model to
pursue its own trajectory until the next data assimilation
step; this evolution is typically quite skillful (as evidenced
by the model skill without assimilation) and is aided by the
accuracy of forcing data from the 6 km COAMPS atmo-
spheric forecast. Assimilation by nudging, on the other
hand, can unnaturally constrain the model evolution during
the forecast interval, denying the model the opportunity to
respond accurately to the forcing. This is especially so if the
observational system is unable to return data at sufficiently
frequent time intervals.
[56] Some aspects of the observational network were

found to be limiting to forecast skill. Imperfect initial
conditions inaccurately set the initial thermocline depth
and upper-layer temperature. However, after a week of
forecasting, memory of this initial error was erased and
the temperature metric errors reduced. The transport metrics
suffered no such initial error. This is consistent with the
dominant features of the mass transport being cross-shore
transport set by Ekman dynamics that in turn sets up
a pressure gradient that balances an alongshore current
(coastal jet). This process is not sensitive to stratification,
and is established rapidly by the wind. Arguably then,
the two-layer transport metrics are not particularly discrim-
inating validation criteria for the three-dimensional flow
response, though the temperature metrics certainly are.
[57] Our methods were unable to achieve an increase in

forecast skill through the assimilation of long-range
CODAR data. We attribute this to an inaccurate extrapola-
tion of the surface current observations to the rest of
the water column in areas of the model domain beyond
the central LEO region. This projection is required for the
melding and nudging assimilation approaches because the
techniques themselves do not adaptively determine spatial
or temporal covariance of the data. To assimilate CODAR
only at the surface would produce dynamically imbalanced
vertical shear. More advanced methods such as four-dimen-
sional variational assimilation presently being developed for
ROMS [Moore et al., 2004], or an adaptation to shallow
waters of the PSAS method used by Oke et al. [2002b],
have the potential to overcome this limitation. Given the
significant intrinsic skill of the LEO model, future improve-
ments to the assimilation method should enable skilful use
of CODAR in further hindcast studies of the data gathered
during the LEO Coastal Predictive Skill Experiments.
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