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Abstract. Statistical interpolation is applied to 8 years of cloud-interrupted satellite
radiometer data to produce estimates of sea surface temperature (SST) at 10-day intervals
in the Indo-Australian region. The data are 9-km resolution daily “best SST” values
calculated globaliy by the NOAA/NASA Pathfinder project reanalysis of advanced very
high resolution radiometer (AVHRR) data. The optimal averaging technique determines
an unbiased estimate of the signal that has the minimum mean square variance from the
data, within the limits of the expected measurement error. Previous studies have shown
that the method is superior to other linear averaging techniques, especially that of simple
composite averaging. The method is applied in the time domain only, preserving the 9-km
spatial resolution of the data. The signal and noise covariances were evaluated from the
data. This was done with care so that accurate estimates of the error bounds that bracket
the optimally averaged values might be obtained. These error bounds were then verified
against in situ data. A Markov function, (1 + 7/a) exp (—7/a), where 7 is the time lag
and a is a characteristic timescale, was fitted to the data and used for the signal
correlation function. This was selected after evaluation of functional forms proposed in
other studies. The effect on the analysis of geographical variation in the correlation
function was considered. The computational demand of the repeated matrix operations in
optimal interpolation was reduced by using a limited duration data window. The complete
analysis procedure for the 8-year data set, comprising over 10° time series, was tractable
on a modern workstation. The result is a set of SST maps for 1987-1994 at an interval of
10 days and a spatial resolution of 9 km. The analyses are suitable for applications such as
high-resolution ocean and atmosphere modeling where the timescales and space scales of

interest are comparable to the analysis (i.e., of the order of 10 days, 9 km) and for which
the presence of gaps due to clouds is problematic. Some features of Indo-Australian
regional mesoscale circulation that the analysis highlights are examined, including
examples of detailed mesoscale SST evolution and interannual variability.

1. Introduction

Remotely sensed sea surface temperature (SST) data from
the radiometers on board NOAA meteorological satellites are
used widely in studies of the ocean. Clouds obscure radiometer
SST observations, and this is problematic for applications
where an uninterrupted high-resolution SST data set is re-
quired. Cloud detection algorithms help minimize data loss,
but the gaps created by cloud cover often must be filled by time
and space averaging or interpolation. This paper describes the
application of a statistical interpolation/averaging method to
produce uninterrupted SST maps with a spatial resolution of 9
km and temporal separation of 10 days. The results are suitable
as boundary conditions for high-resolution regional models of the
ocean and atmosphere, and they also directly chart interannual
variability and readily locate repetitive mesoscale features and the
timescales and space scales of their residence and reappearance.
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The input data for the analysis are the daily, ~9-km resolu-
tion, “best SST” data from the NOAA/NASA Pathfinder
Project reanalysis of advanced very high resolution radiometer
(AVHRR) data [Smith et al., 1996]. These are global, mul-
tichannel data sets derived from the global area coverage
(GAC) data acquired by the AVHRR instruments onboard the
NOAA TIROS polar-orbiting meteorological satellites. Fea-
tures of these data and a synopsis of the Pathfinder reanalysis
procedure are given in section 2.

In section 3 the mean seasonal cycle and long-term trends of
the data are determined, and some features of the regional
circulation that they show are discussed. The optimal (statisti-
cal) interpolation formulation is reviewed in section 4. It is
applied in the time domain only, thereby retaining the 9-km
spatial resolution. The inclusion of time averaging follows that
employed by Chelton and Schiax [1991] in their estimation of
time averages of chlorophyll concentration from the coastal
zone color scanner {(CZCS). They proved statistical interpola-
tion to be a significant improvement upon the simple compos-
ite averaging used by many workers to estimate several-day
averages from data with gaps resulting from clouds. Successful
application of the method relies on the removal of slowly
varying background time series (taken from section 3) and the
estimation of certain properties of the residual time series to
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Figure 1. The percentage of days for which best sea surface

temperature (SST) data are recorded in each Pathfinder time
series for 1987-1994.
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be interpolated. The basis of our choice of these parameters is
presented in section 5. ’

A comparison with in situ data in section 6 serves two pur-
poses: ensuring that no outrageous biases occur in the satellite
data and verifying the accuracy of the theoretical error esti-
mates produced in the analysis. The method is applied in the
regional seas surrounding Australia to produce 10-day SST
maps for the entire period of Pathfinder data available to us. In
section 7, examples of the results illustrate the types of me-
soscale structures that the analysis resolves.

2. Pathfinder SST Data Set

The Jet Propulsion Laboratory (JPL) Physical Oceanogra-
phy Distributed Active Archive Center (PO.DAAC) make
available a great range of data products, of which we have
chosen the equal angle (360/2"> degrees of arc), nominally
9-km resolution, global best SST data spanning the period
January 1987 to August 1994. The steps involved in producing
these data are described in detail by Smith et al. [1996] and by
JPL PO.DAAC (the NOAA/NASA AVHRR Oceans Path-
finder home page, available as http:/podaac.jpl.nasa.gov/sst/).
The quality of the original 4-km GAC data downloaded from
the spacecraft is flagged according to certain multichannel and
threshold tests. Further cloud clearing is achieved by compar-
ison to climatology and triweekly averages. In addition to
clouds, AVHRR measurements are subject to errors from
aerosol contamination. An example would be the large nega-
tive biases associated with stratospheric aerosols from the
Mount Pinatubo eruption in June 1991 [Reynolds, 1991]. The
bias, or mean difference of AVHRR minus in situ SST value,
in this case reached —1.5°C. However, careful incorporation of
in situ measurements can correct for these types of atmo-
spheric anomaly. The Pathfinder algorithm utilizes a matchup
data base of in situ SST observations to adjust the coefficients
of the nonlinear SST algorithm.

A comparison of version 1 Pathfinder SST with matchup
data from moorings and buoys for 1987-1990 (E. Smith, per-
sonal communication, 1997) (available as http://www.ccpo.odu.
edu/~lizsmith/) showed a global average bias of —0.1°C and a
root-mean-square (rms) difference of 0.94°C. The negative
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bias suggests that there may still be some cloud contamination
in the Pathfinder data set [Smith et al., 1996].

Our region of interest is from the equator to 70°S and 90°E
to 160°W, which spans approximately one eighth of the ocean
surface. We choose to use as input to our analysis only the
descending satellite passes, as these occur during the early
morning hours for this region and as such should be less af-
fected by diurnal heating. The number of time series involved
is then of the order of 10°. '

The 8-year data set spans 2780 days; however, the maximum
number of best SST values at any one location is just 50% of
the total and on average is between 10 and 20% (Figure 1).
This fraction can be thought of as a negative cloud index. It is
shown in section 5 that regions of higher data availability, in
general, have a lower predicted error in the estimated SST.

3. Mean Seasonal Cycle

It is preferable to apply statistical interpolation to the anom-
aly time series when as much background deterministic long-
timescale variability as possible has been removed. This back-
ground is restored after interpolation. In this way the anomaly
series is more likely to meet the condition of being statistically
stationary, and in prolonged data gaps when the interpolation
returns an estimate near zero, the final estimate produced will
approach the background field or, effectively, climatology.

We chose to determine the background field for each time
series independently by least squares fit to the sum of a mean
and by annual and semiannual period harmonics. Longer-term
climatology was estimated by a 365-day running mean. The
fitted parameters show coherent spatial patterns throughout
(Plate 1).

The geographical structure apparent in Plates la-1f, re-
solved to 9 km, carries a wealth of information. Sharp V-
shaped patterns in the mean isotherms adjacent to the west
and east coasts of Australia are the signatures of two warm
southward flowing boundary currents. In the west the exten-
sion of the Leeuwin Current turns at Cape Leeuwin toward the
Great Australian Bight, where it continues to warm shelf wa-
ters with respect to those offshore. In the east the East Aus-
tralian Current (EAC) carries warm Coral Sea water south-
ward along the outer edge of the Great Barrier Reef. At 35°S,
where the V-shaped pattern weakens, the EAC turns toward
New Zealand. In the eastern Tasman Sea the 17°-18°C iso-
therms meander southward, then northward, as they cross the
Caledonia Basin and Wanganella Bank (depth <500 m) on the
crest of Norfolk Ridge. A strong meander in subsurface ther-
mal data and intensified velocities have been observed there
and are associated with topographic deflection of eastward
flow [Stanton, 1976, 1979]. Isotherms strike southward along
the northeast coast of New Zealand, where the East Auckland
Current flows southward. In the southwest corner of Plate 1a,
surface isotherms converge along a line from 95°E, 45°S to
120°E, 50°S, paralleling the northern flank of the Southeast
Indian Ridge and revealing a surface signature of the Subant-
arctic Front [Belkin and Gordon, 1996].

Plates 1b and 1c show that large annual temperature varia-
tions are the norm on the continental shelf, with the phase of
the maximum occurring at the peak of summer in January or
February. In a broad region of the northeast Indian Ocean
between the northwest shelf of Australia and Java the month
of warmest temperature occurs successively later, from Janu-
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ary near Timor through to April west of 105°E, as tropical
waters spread southwestward during this season [Gentilly,
1972]. In a narrow region close to the coast of western Aus-
tralia, from 22° to 35°S, the annual cycle peaks in April, much
later than the surrounding offshore waters. It is at this time of
year that the Leeuwin Current is at its strongest, bringing warm
waters from the tropics [Cresswell and Golding, 1980; Godfrey,
1996].

Some local regions of low annual amplitude can be distin-
guished. At the southwest corner of the mainland, weak south-
erly winds during May allow the Leeuwin Current extension to
advect warm water around Cape Leeuwin, sometimes at
speeds of up to 1.5 m s™* [Tomczak and Godfrey, 1994], off-
setting the wintertime cooling that would otherwise occur. An-
other region of low annual amplitude is in the east of the Great
Australian Bight, where summer upwelling regularly brings
cooler water to the surface, thereby decreasing the amplitude
of the seasonal cycle [Schahinger, 1987).

Significant semiannual SST variation (Plate 1d) only occurs
close to shore along Australia’s northern coast and in the
Banda Sea, where the cycle peaks in April and October, at
times of weak monsoon winds. Elsewhere, the calculated semi-
annual signal is weak, and little relevance can be ascribed to its
phase (not shown).

After the mean seasonal cycle was removed from each time
series a 365-day running mean filter was applied to the resid-
uals to determine the interannual component of the back-
ground climatology. Plate 1e shows the standard deviation of
this component over the 8 years of data. Interannual variability
is greatest in the western equatorial Pacific, where large SST
changes are related to El Nifio—Southern Oscillation (ENSO)
events. There are other regions of notable interannual vari-
ability. Along the south coast of Java the SST minimum that
occurs each September because of upwelling during the south-
west monsoon is about 1°C colder than normal in the years
1987, 1988, and 1994 (and, to a lesser extent, 1991). Interan-
nual variation south of the Great Australian Bight is in the
form of a warming of some 2°C over the years 1987-1990. In
the east Tasman Sea and subtropical waters surrounding
northern New Zealand, there is a cycle of amplitude =0.5°C of
roughly 7-year period, with minimum during winter 1992, that
is similar to the cycle observed by Sprintall et al. [1995] in
expendable bathythermograph (XBT) data. They attributed
the variability to divergence in the upper 200-m heat budget in
the region and related this to anomalous cold atmospheric
conditions in New Zealand in winter 1992. In our data the cycle
appears to be locally amplified at Wanganella Bank (=1°C),
where Stanton [1979] found that the location of the Tasman
Front varied significantly between years.

Once the cyclic seasonal and interannual background field is
removed from each time series the variance of the anomaly
data (Plate 1f) is a measure of the signal, plus noise, remaining
to be described by the optimal interpolation. This variability is
predominantly at shorter timescales than the seasonal cycle.
High variance occurs where there is known mesoscale eddy
activity; in the region from the EAC separation southward to
Tasmania and in the Leeuwin Current and its extension around
Cape Naturaliste. There is also high variance along the axis of
the Subantarctic Front owing presumably to meandering of the
front’s location. The fitted background field accounts for
>85% of SST variance in the Australian regional seas.
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4. Optimal Averaging of Irregularly Sampled
Time Series

The methodology we use has been described previously in
the oceanography literature, where it is variously referred to as
Gauss-Markov, optimal or statistical interpolation, or objective
analysis [Gandin, 1963; Bretherton et al., 1976]. The technique
is commonly used to interpolate irregularly sampled, noisy
data to regular grids for subsequent analysis. Here we apply
the method solely in time and preserve the high spatial reso-
lution of the data. The analysis is therefore somewhat akin to
digital filtering in time series analysis but with explicit account
being taken of measurement error in the data. Our principal
objective is to overcome gaps in the time series and construct
a set of smoothed time series of SST at the shortest meaningful
regular intervals.

After removing the background seasonal cycle each anomaly

time series may be denoted 6, k = 1, ---, N, comprising N
inexact observations made at times f,.
Gk = d)k + Exr (1)

These data are the sum of two, assumed independent, station-
ary stochastic processes, the signal ¢, and noise g, that we
wish to separate. The optimal estimate qAb of the true value ¢ at
any given estimation time r, will be calculated as a weighted
sum of the data

N

a’(to) = Z oy (2)

k=1

where the weights «, will be different at each estimation time.
The noise is assumed to be uncorrelated with itself and to have
variance o2

28 = 025 3)

)

where the overbar denotes the expected value. The signal co-
variance is

db =0 <21>pi,j 4)

where o7 is the signal variance, and time stationarity implies
that the normalized correlation function p; ; = p(7; ;) is sym-
metric and invariant, depending only on the time lag 7, ; =
lt; — .

The Gauss-Markov formulation minimizes the expected en-
semble mean square error of the interpolation in a least
squares sense, giving a set of linear equations for the a;

P+ A\Da=p (5)

where P is the signal correlation matrix with elements P;; =
p(7, ), Lis the identity matrix, and A = o7/07 is the ratio of
noise to signal variance. The right-hand side of (5) is a vector
of the time average of the signal correlation over an averaging
period T, with elements

1 to+T72
@:TJ plt' = t) dt’ (6)

0—7/2

Chelton and Schlax [1991] introduced the notion of time aver-
aging to the standard optimal interpolation method in recog-
nition that some temporal averaging is desirable to reduce the
aliasing of high-frequency variability in the signal. Conse-
quently, the quantity that is estimated is not the signal at a
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particular estimation time but is its average over an interval T
chosen to be relevant to the application and available data
density. This is an important point to remember when com-
parisons with in sifu data are performed in section 6.

The theoretical estimate of the mean square error in the
analysis §7 is given by [Chelton and Schlox, 1991]

V= o3y - a'p)

1 10+T/2
Y= F
to—T72

The correlation function p, signal-to-noise ratio A, and av-
eraging period T must be specified prior to applying the
method. Our procedure for choosing these is shown in section
5 along with a discussion of the theoretical error estimates.

t09+T/2
p(t' — 1) dt' dt N

107172

5. Application to the Pathfinder Data

In principle the correlation function and signal-to-noise ra-
tio must be estimated accurately for the result to be optimal.
However, we need not be overzealous as derived estimates are
sufficiently robust that a reasonable guess of suboptimal pa-
rameters produces estimates that do not significantly differ
from the optimal parameter estimates [Chelton and Schlax,
1991; Denman and Freeland, 1985]. Where sampling is well
distributed, the change in patterns is negligible.

5.1.

The correlation of the SST data was estimated by calculating
the mean of anomaly data covariance values 6,0, binned ac-
cording to lag. A continuous functional form was then sought
that closely represented the shape of the observed data corre-
lation, with the parameters of the function being determined
by least squares fit. In most applications of optimal interpola-
tion the Gaussian function has been favored as the shape of the
correlation function, although many other functions have been
considered. The performance of optimal interpolation using
varied correlation functions has been examined through the
use of synthetic data where the statistics are known [Franke,
1985] and through the use of real data where certain locations
are withheld [Seaman and Hutchinson, 1985].

We considered three single parameter functional forms for
p(7) used in recent studies and compared their ability to rep-
resent the following sample SST correlations: (1) Gaussian,
(1) = exp [—% (7/a)?]; (2) linear roll-off in the power spec-
trum, p(7) = inverse Fourier transform of ™%, where o is
frequency [Chelton and Schlax, 1991]; and (3) Markov, p(1) =
(1 + 7/a) exp (—7/a), T > 0 [Seaman and Hutchinson,
1985].

The parameter a is in each case a measure of the timescale
of correlation. The shortcomings of the Gaussian function
when applied to typical geophysical data can be summarized as
a propensity to overestimate the weights «, at short lags and
underestimate them at large lags [Franke, 1985; Mclntosh,
1990]. This amounts to oversmoothing at small scales and may
be countered by artificially lowering the value of A, causing the
interpolation to follow the data more faithfully. The second
function is based on a constant roll-off of slope @ in the power
spectrum. Chelton and Schlax [1991] found that a = 1.35 fit
log-transformed chlorophyll data well. Fitting to the Pathfinder

SST Correlation Function
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Figure 2. Three functional forms for the correlation function

fitted to the binned lagged covariance for best SST data in the
Coral Sea (160°E, 25°S).

data gave values near a = 0.5, but the function tended to fall
off too sharply for the short lag correlation. The three func-
tions were fitted to sample binned lag covariances within our
data region; a typical example is shown in Figure 2. We found
that the Markov function fitted the shape of the Pathfinder
SST correlation best throughout our region of interest, and we
use it for all our analyzed time series.

The optimally averaged estimates corresponding to the dif-
fering functional fits of Figure 2 are shown in Figure 3. For the
most part the three functions give similar optimal estimates,
there being only occasional instances where they differ by more
than the expected error =i. The linear spectral roll-off func-
tion shows a propensity to drop to an estimate nearer zero
during data gaps, a consequence of the weights falling more
rapidly at shorter lags. Also, the larger weights placed on the
very close range data cause the interpolation to reach toward
individual data values. The Gaussian function produces an
overall smoother estimate.

5.2. Signal-to-Noise Variance Ratio

To estimate the measurement error variance, we utilize the
assumption that the noise is uncorrelated with itself. The data
covariance should therefore comprise the signal covariance
plus a delta peak at zero lag due to the noise. The data variance
at zero lag (Plate 1f) is then ¢7 = o7, + o-. This property is
evident in Figure 2; close to zero lag, the covariance function
approaches a signal variance of 0.32°C?, yet the data variance
jumps to 0.47°C? at zero lag, indicating a noise variance of the
order of 0.15°C>. This corresponds to a measurement error of
0.39°C, which is less than the commonly accepted measure-
ment error of the order of 0.6°C in AVHRR data. This is
presumably a result of the 9-km spatial averaging and strict
quality control of the Pathfinder data.

The value o2 = 0.15°C? was found to be appropriate
throughout the region, so that the signal-to-noise variance
ratio A was computed directly from the anomaly variance at
each point as
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Figure 3. Optimally averaged time series and best SST data corresponding to the three forms for the

correlation function in Figure 2.
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5.3. Averaging Time Period

Cloudiness that obscures satellite SST observations may per-
sist for many days. Figure 4 shows the frequency of occurrence
of a given gap for a set of time series at 10°S across the central
Coral Sea. The periodic signal that is evident is a function of
satellite trajectory and the width of the satellite’s field of view
and is most pronounced at low latitudes but no longer discern-
ible by midlatitudes. The underlying log decay in gap duration
is representative of all locations, and for most of the Pathfinder
data, 90% of adjacent data points are separated by less than 4
days.
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Figure 4. The frequency of the occurrence of gaps of partic-
ular duration in the best SST time series at 10°S in the central
Coral Sea. The data are nominally daily, so a gap of 1 day
corresponds to an uninterrupted time series.

Temporal averaging was introduced to the interpolation
procedure to smooth high-frequency signal variability. To re-
duce the possibility of aliasing high frequencies, an averaging
time period of T = 10 days was chosen so that the majority of
data gaps are shorter than 7/2.

Throughout most of our region of interest the maximum gap
is <40 days. However, equatorward of 10°S and in the southern
Indian Ocean, the maximum gap can be quite extreme. This
would preclude the use of many interpolation methods which
may otherwise be faster; a running average may have to stretch
to a length of 100 days to find a data value, and smoothing
based on polynomial functions may produce estimates well
outside the bounds of reasonable values where large data gaps
fail to constrain the smoothing functions.

5.4. Theoretical Mean Square Error Estimation

The mean square error in any optimal average ¢ is given by
(7). It is proportional to the signal variance o7, but is depen-
dent on the individual data points only in terms of the data
spacing and the chosen p and A, not the individual data values
themselves.

The estimated # may be quite misleading when an inaccu-
rate representation of the correlation function is used [Franke,
1985; Mclntosh, 1990]. McIntosh [1990] gives an example where
the correlation length scale is greater than the true value and
the actual interpolation error increases while the estimated
error decreases. This is because the optimal interpolation
method is instructed to place greater weight on more observa-
tions in the belief it can interpolate more accurately, whereas
in fact, it fails to resolve variability at the true length scale. He
concluded that it is best to underestimate the length scale in
uncertain cases.

Given the care with which we have estimated p and A, we
have confidence that the error estimates included with the
10-day optimal average results in section 7 are reasonable. This
is aftested to in the comparisons with in situ data in section 6.
The median i for each time series (Figure 5) shows that at
midlatitudes, where the Pathfinder data has the fewest gaps,
the median expected error in the optimal averages is typically
0.2°C.
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Figure 5. Median expected error for each time series *
from (7).
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5.5. Processing the Full Data Set

The method is formulated assuming the optimal average is a
weighted sum of all the data in the time series, but in practice,
the analysis can be restricted to an appropriate duration on
either side of the estimation time because at large lags the «,
values become very small. This lessens the computational load
by reducing the dimension of the matrices in (5). We chose an
80-day data window centered on the estimation time. The
matrices in (5) are sized by the number of best SST values in
the data window and thus vary for each estimatc time, being
typically of the order of 15.

Over a region of interest as large as that considered here, the
correlation function might be expected to vary as the physical
processes that influence SST variability and their timescales
alter. Binned data correlations were compared for several lo-
cations within our region of interest (Figure 6) with each rep-
resenting a different dynamical regime or regional situation:
locations 1 and 4, subtropical convergence; location 2, Great
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Figure 6. Binned lagged data covariance ¢,¢; for several locations in the region of interesi. The locations
selected span the extremes of geographical variation in correlation timescale. Each plot shows the single
Markov function, witha = 12, that was used in the final processing of all the optimal average time series. The
bars in the left of each box show the amplitude of the delta peak at zero lag, which is equivalent to the noise
variance. The locations pertaining to each number are also shown in Figure 6 (top right).
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Figure 7. Optimally averaged time series for a location in the Tasman Sea computed using a Markov
correlation function with a = 12 days (i.e., the value used to process the entire data set) and valuesa = 8
and 20 days that bracket the extremes of the timescales observed in the data. Expected error bounds are shown

on the g = 12 time series.

Barrier Reef; location 3, midlatitude open ocean; locations 4
and 5, western boundary current; location 6, eastern boundary
shelf; location 7, equator; and location 8, monsoon region.
Over such a variety of regimes the shape and timescale of the
correlation vary remarkably little. Therefore we elected to use
a single Markov function, as its shape is most representative of
the data (Figure 2), with timescale ¢ = 12 days, to compute
optimal averages for the entire data set. This one function is
plotted in each panel of Figure 6 for comparison.

The poorest fit is at location 5, where there is a significantly
negative correlation at 40-50 days, indicating a weak period-
icity at 90 days in the East Australian Current system, a prop-
erty also evident in velocities estimated from ship drift data
[Bennert, 1983}. Elsewhere, the Markov function with a = 12
days fits well.

The timescale was calculated by least squares fit of the
Markov function to the data correlation for lags <50 days.
Throughout the entire region, best fits gave values of a typi-
cally between 11 and 13 days. To emphasize the stability of the
optimal averages with respect to changes in a, Figure 7 com-
pares resuits fora = 12 to those for @ = 8 and 20 days (values
that bracket the extremes we observed in the data) for a time
series in the Tasman Sea. Results never differ by >0.2°C and
for the most part are <0.05°C and well within the estimated
error bounds on the ¢ = 12 results. It may be useful to
compare Figure 7 with Figure 3, which showed estimates using
different functions rather than different length scales.

6. Validation of the Estimates Against in Situ
Data

To evaluate the accuracy of our Pathfinder SST 10-day av-
erages and error estimates, we compare them to three different
types of in situ observations. These are surface conductivity-
temperature-depth (CTD) observations from a single ship
cruise, a set of drifting buoy observations, and continuous
surface mooring readings spanning several years. A compari-
son would be best performed with in situ data that is also a
9-km 10-day average. The mooring data can be 10-day low-pass

filtered to remove higher-frequency variability, but for the ship
and drifter data this is not possible because of the moving
platforms. For these data we must accept that spatial and
high-frequency temporal variability may add to the calculated
variance between the optimal averages and in situ measure-
ments.

The comparison is quantified by considering three criteria:
(1) the mean bias between Pathfinder and in situ observations,
(2) the root-mean-square (rms) difference between the 10-day
averages and the in situ data compared to the theoretical value
(rms;) derived from the error estimates (*i), and (3) a chi-
square goodness-of-fit test of the error estimates [Bendat and
Piersol, 1966}. The chi-square test examines whether the pro-
portion of in situ observations that fall within the estimated
10-day average error bars is consistent with the probability
distributions of the data and the Pathfinder averages.

6.1. Drifting Buoys

Pathfinder 10-day averages were compared with coincident
observations from nine drifting buoys released in the Austra-
lian regional seas by the Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO) during 1987-1994
(G. Cresswell, personal communication, 1997) (Table 1). The
mean bias of the nine buoys was —0.02°C, and the rms differ-
ence between all observations and the analyses was 0.59°C. Of
the nine buoys, only three have time series long enough to
conduct a meaningful chi-square test. Their time series and the
corresponding Pathfinder values and error bars are shown in
Figure 8. For buoys 6140b and 6143b, more than 70% of the in
situ observations lie within the estimated error bars, and the
rms and rms; values are similar (Table 2). The chi-square test
indicates that for these two buoys the estimated error bars are
a valid representation of the errors in the 10-day averages.
(Degrees of freedom for the chi-square test were determined
following Bendat and Piersol [1966, section 4.6], and the test
was applied at the 95% significance level.)

The estimated errors in the Pathfinder analyses for buoy
6135b failed the chi-square test, largely because the final 6
months of the buoy data show a consistent bias of some —0.5°C
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Table 1. Comparison of SST Observed by Drifting Buoys and Pathfinder Analysis Estimates
Start End

Bias, rms,
Buoy Date Position Date Position °C °C
6130 Dec. 6, 1991 23.0°S 1594°E April 15, 1991 25.2°S 162.9°E 0.29 0.55
6131a June 11, 1987 30.3°S 113.3°E Dec. 31, 1987 27.7°S 108.3°E -0.26 0.48
6135b June 26, 1989 15.6°S 120.5°E Dec. 31, 1990 12.0°S 73.9°E —0.08 0.47
6138a July 14, 1988 35.5°S 152.3°E Feb. 20, 1989 25.0°S 153.3°E -0.01 0.68
6139 Nov. 16, 1988 35.9°S 151.5°E April 25, 1989 40.1°S 154.5°E —0.03 0.63
6140b Aug. 15, 1991 44.0°S 150.0°E Dec. 7, 1993 39.7°S 172.5°E 0.01 0.53
6143b July 30, 1992 42.0°S 144.7°E May 29, 1994 38.5°S 169.8°E 0.02 0.60
6146b May 26, 1992 42.7°S 148.8°E Nov. 13, 1993 36.9°S 160.6°E 0.17 0.90
6150 April 29, 1993 12.6°S 129.9°E Sept. 8, 1993 12.1°S 130.3°E —0.30 0.43
Average over all buoys® -0.02, ¢ = 0.19 0.59, ¢ = 0.14

“Here o is standard deviation between buoys of the bias.

(Figure 8). We have no explanation why the first year of data
from this buoy should compare well, yet the final 6 months
compare so poorly. We would not have expected any signifi-
cant change in the Pathfinder data over this period while the
buoy traversed nearly due westward in the tropical Indian
Ocean.

Buoy 6140b, which spent time south of Tasmania and in the
Tasman Sea, covers the time period following the Mount Pi-
natubo eruption. It shows no sign of anomalously large bias
that would indicate possible aerosol contamination.

6.2. CTD Cruise

Cruise FR9306 of the R/V Franklin transected the Tasman
and Coral Seas in July, 1993 (J. Church, personal communica-
tion, 1997). The Pathfinder optimal averages for this period
were linearly interpolated in time to the dates of the hydro-
graphic stations and compared to the surface temperature re-
corded by the CTD (Figure 9). Though variability on short
timescales and space scales cannot be filtered out of the CTD
data, the comparison is very favorable.
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Figure 8. SST from three surface drifting buoys compared to 10-day Pathfinder averages interpolated to the
buoy observation times. Buoy deployment and recovery locations are given in Table 1.



WALKER AND WILKIN: OPTIMAL AVERAGING OF PATHFINDER SST

12,877

Table 2. Validation of 10-Day Average Pathfinder SST and Error Estimates by

Comparison to Various In Situ Data

x> Goodness-of-Fit Test

In Situ Bias, ms, rmsy, Observations,”

Observations °C °C ° % Sample Statistic® n  Pass/Fail
Buoy 6135b —0.08 0.47 0.18 41 297 5 fail
Buoy 6140b 0.01 0.49 0.44 78 475 5 pass
Buoy 6143b 0.02 0.56 0.40 72 433 5 pass
FR9306 —0.10 0.42 0.38 60 7.2 5 pass
TAO 5°S, 165°E -0.27 0.41 0.35 45 16.8 9 pass

“Percent of observations that fall within expected error bars .
bSample statistic [Bendat and Piersol, 1996, equation (4.49)] is compared to x2., o5, Where n is the

degrees of freedom.

The mean bias of —0.1°C is identical to the global average
validation estimate noted in section 2. The rms difference was
0.47°C, which reduces to 0.42°C if the analysis estimates are
first smoothed with a 1-2-1 time filter. This suggests that there
is possibly some high-frequency error variance still in the anal-
yses. In comparison, the average predicted error (rms;) of the
analyses is 0.38°C. Of the 79 CTD measurements, 60% lie
within the error bars of the analysis estimates, and the error
estimates pass the chi-square test.

6.3. Mooring Time Series

Figure 10 shows the 10-day Pathfinder averages compared to
time series of 10-day low-pass-filtered daily average SST from
the Tropical Atmosphere-Ocean (TAO) mooring (see NOAA/
Pacific Marine Environmental Laboratory (PMEL) TAO
home page, available as http://www.pmel.noaa.gov/toga-tao/)
at 5°S, 165°E. The Pathfinder estimates fall below the TAO
data in mid-1991 and do not recover until early 1992. This is
almost certainly a bias related to the Mount Pinatubo eruption
of June 1991. A second comparison to a TAO mooring on the

equator at 170°W (not shown) exhibits a Mount Pinatubo bias
of similar magnitude and duration.

The 5°S, 165°E mooring time series has a mean bias of
—0.43°C and a rms error of 0.63°C. If the 9 months following
the Mt Pinatubo eruption are excluded, these drop to —0.29°
and 0.43°C, respectively. The error bars pass the chi-square test
if the anomalous 9 months are excluded. Thus, while the error
bars adequately represent the typical error variance, they can-
not accommodate such a major systematic bias as the Pinatubo
eruption. '

6.4. Diurnal Variation

Diurnal SST variations can be substantial where low-wind
conditions permit shallow mixed layer depths and insolation is
strong. The Pathfinder analyses computed here are based on
nighttime measurements, which are typically the lowest values
in the daily cycle, and therefore could possibly show a negative
bias of around one half the value of the average diurnal cycle.
From midlatitudes to the Southern Ocean we do not expect
this to be a major consideration in the present data because of
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Figure 10. (a) Ten-day Pathfinder SST analysis (thin line) with expected error bars compared to 10-day
low-pass time series from the Tropical Atmosphere-Ocean (TAO) mooring at 5°S, 165°E (thick line). (b)

Difference of Pathfinder minus TAO.

each year. A feature of this nature, with strong eastward flow
at its southern edge, carried drifters released offshore south-
eastward into the Leeuwin Current [Cresswell and Golding,
1980]. Near 33°S a warm anomaly, sometimes separated from
the Leeuwin Current, occuts each year, though its latitude is
more variable than the other features. Drifters have been
trapped in this feature for 30-60 days, completing several
circuits of the eddy before escaping [Cresswell, 1977).

When examined in detail, the scenes in Plate 3 commonly
show cold cyclonic features of the order of 100-km diameter on
the northern sides of the two southern warm meanders. The
process of meander breaking through baroclinic instability
leads to such cyclonic eddies being paired with separated warm
anticyclones [Griffiths and Pearce, 1985a). It has been specu-
lated that variation in the strength, location, or timing of these
mesoscale events may contribute to interannual variability in

the settlement of western rock lobster larvae in these waters
[Pearce and Phillips, 1988].

8. Summary

In the Australian regional seas the cloud screening and qual-
ity control procedures applied by the Pathfinder analysis lead
to gaps in the 9-km daily best SST data of median duration 3-5
days, with typically 60—80% of days having no SST value re-
turned. Statistical interpolation by optimal averaging produces
time series of best SST at the 9-km spatial resolution of the
original data at an interval of 10 days, capturing considerable
mesoscale SST variability in the result.

Deterministic cyclic and interannual variability in the data
was estimated by fitting annual and semiannual harmonics and
applying a 365-day running mean filter. These background
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time series at each point amount to an interannual and sea-
sonal climatology for the data. Optimal averaging was applied
in the time domain only to the anomaly between the data and
the background time series. The background field shows con-
siderable spatial structure near the 9-km resolution of the data
that does not appear in other SST climatologies [Reynolds,
1988; Levitus and Boyer, 1994] that interpolate data horizon-
taily as well as in time. Some short length scale features have
distinct temporal signatures, such as interannual variability in
the strength of Java coastal upwelling, local amplification of
interannual SST variation at Wanganella Bank in the Tasman
Sea, and the regular seasonal extension of the Leeuwin Current.

Once the background climatology is removed, a Markov
function (1 + 7/a) exp (—7/a) with timescale a = 12 days
is a very good fit to the anomaly time series correlation func-
tion p(7) everywhere in our region of interest. The noise vari-
ance was also stable geographically at 2 = 0.15°C?, so that
the noise to signal variance ratio A could be computed from the
data variance at each location using (8).

We have considered a region that extends from the tropics
to high latitudes and includes boundary currents in two oceans.
Our experience that p(r) and o2 vary little over such a large
domain suggests that our choices for these may well be used
with SST data in other regions, with only a cursory check being
required that they fit the anomaly time series. We emphasize,
though, that the stability of p and ¢Z in our data are due in
large part to the removal of the majority of the signal variance
into the background field. Even the 365-day running mean
filter plays a significant role here because without it, over 8
years of data, the anomaly correlation in some regions had a
pronounced tail at very long lags; p(100 days) would be of the
order of 0.2 in the Great Australian Bight and northwest shelf.
Removing interannual variability from the data to be optimally
averaged alleviates the need to consider including this tail in
the correlation function and also reduces the anomaly variance
and therefore the expected error calculated from (7).

Selecting the averaging period T = 10 days was the least
straightforward of our choices. Optimal interpolation is gen-
erally applied without averaging the correlation function, and
we could have taken this approach. The averaging introduces a
modest reduction in the expected error, with y = 0.95 in (7)
being typical, but the appeal of applying the averaging step is
principally that for our applications we are interested in sev-
eral-day timescales. If we had perfect uninterrupted daily SST
data, we would still choose to filter this in time to make the
data volume more manageable and to remove variability not
relevant to the mesoscale processes in which we are primarily
interested. We tried the shorter averaging period T = 5 days
but succeeded only in smoothly interpolating the interval in the
10-day averaged time series. Estimates at the same time com-
puted with 7 = 5 and T = 10 are barely distinguishable.

It might be expected that spanning temporal data gaps
would be made easier by applying some horizontal interpola-
tion, adding a spatial lag to p and including adjacent data
points in the optimal average. This is not the case. The data
gaps due to clouds are generally large contiguous areas (e.g.,
Plate 2b) so that relatively few of the points with no best SST
are immediately adjacent to good data. Data at the edges of
cloud regions may also contain a cold bias from undetected
patchy cloud, and our experiments including spatial smoothing
were unsuccessful.

Strictly speaking, our optimal averaging is suboptimal in the
respect that we use a correlation function that is an approxi-
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mation (though a very good one) to the true correlation, and
we use an 80-day data window centered on the analysis time
rather than all the data. By removing the majority of the long
timescale variability to the background field, the weights «
drop rapidly to zero with increasing lag. Limiting the data
window, then, has negligible effect on the solution, yet the
computation required in the repeated solution of (5) is dra-
matically reduced. To perform the optimal averaging of the 10°
8-year time series in our region of interest took 3 days on a
modern workstation. i

The 10-day average estimates and error bars were validated
by comparison with in situ data. In tropical TAO moorings an
effect of the Mount Pinatubo eruption was apparent; however,
the higher-latitude buoy and CTD data show no Mount Pina-
tubo biases and neither do comparisons with XBT data from
volunteer observing vessels in the Tasman Sea (data not
shown). The buoys show no systematic spatial or temporal
trend in errors that might indicate gross errors in the SST
algorithm. A chi-square goodness-of-fit test was applied to see
whether the estimated error bars on the optimally averaged
Pathfinder data were consistent with the probability distribu-
tion of the in situ data. The discrepancy between Pathfinder
and in situ estimates was too large to be explained by the
expected error bars for only one of the five time series long
enough to perform the chi-square test. We therefore consider
the estimated errors to be reasonable indicators of the accu-
racy of the 10-day average SST.

We have presented here results indicative of the features of
Indo-Australian regional mesoscale circulation that the analy-
sis captures. The EAC example shows that 10-day averages
resolve the temporal evolution of mesoscale events, while the
Leeuwin Current example indicates the value of the full 8-year
data set in studying the interannual regularity of mesoscale
variability. The results are well suited to applications, such as
high-resolution ocean and atmosphere modeling, where the
timescales and space scales of interest are of the order of 10
days and 9 km and for which the presence of gaps due to clouds
is problematic.
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