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ABSTRACT

A new four-dimensional ocean interpolation system based on locally weighted least squares fitting is presented.
A loess filter is used to interpolate irregularly spaced data onto a uniform grid. This involves projecting the
data onto quadratic functions of latitude and longitude while simultaneously fitting annual and semiannual
harmonics by weighted least squares. The smoothness scale of the mapping method adapts to match the data
density, thus producing gridded estimates with maximum resolution. The filter has a vertical dimension, such
that the data on adjacent levels are included in the computation. This greatly reduces the effects of discontinuities
in data distributions between adjacent levels, since the estimates at each level are no longer independent. The
loess scheme has been further modified so that the weighting of data points is adjusted to allow for the influence
of both bathymetry and land barriers. This allows the bathymetry to influence the mapped fields in a natural
way, reduces leakage of structure between deep and shallow regions and produces far more realistic coastal
gradients. The flexibility of the loess approach has allowed further adjustments to compensate for irregularities
in spatial and temporal sampling. The mapping is shown to be statistically consistent with an objective measure
of the a priori noise of the dataset. Departures of the mapped fields from independent surface temperature
climatologies and mean vertical sections derived from withheld expendable bathythermograph (XBT) data are
within error limits.

The method is applied to the major seas around Australia, New Zealand, Papua New Guinea, and Indonesia
(508S–108N, 1008E;–1808) to form a high-resolution seasonal climatology of temperature, salinity, oxygen, nitrate,
phosphate, and silicate, referred to as the CSIRO (Commonwealth Scientific and Industrial Research Organisation)
Atlas of Regional Seas (CARS). Stringent quality control procedures have been applied to a comprehensive
dataset assembled from all known sources. The resulting maps successfully resolve both the large-scale structure
and narrow coastal features and illustrate how the bathymetry influences the property distributions.

1. Introduction

The calculation of mean fields from large sets of his-
torical data is a major task in oceanographic data anal-
ysis. The resulting regularly gridded maps are a valuable
reference tool for characterizing ocean regions, provid-
ing a background field for climate studies, and for val-
idating model results. A clear example of this is given
by the widespread adoption of the World Ocean Atlas
(Levitus 1982) as a standard reference. However, the
irregular sampling density and accuracy of ocean ob-
servations, and lack of statistical stationarity, generally
makes the production of maps a difficult exercise. Fur-
thermore, where coastal geometry and bathymetry are
complex, many of the commonly used interpolation
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methods are not capable of obtaining realistic gridded
fields (Brasseur et al. 1996; Dunn and Ridgway 2001,
hereafter DR).

Many existing ocean climatologies are designed for
resolving basinwide scales and hence are highly
smoothed (Levitus 1982). Consequently, they are not
capable of resolving boundary currents, frontal systems,
eddy fields, and other permanent features with small
spatial scales. New high-resolution observations from
satellite platforms and output from general circulation
models demonstrate that the spatial structure of the mean
flow is influential down to the mesoscale thus, existing
climatologies are clearly inadequate (Walker and Wilkin
1998; Roemmich and Sutton 1998; Webb 2000).

In this paper, we present an interpolation system that
seeks to address many of these data shortcomings and
regional complexities. When applied to an ocean region
it provides mean fields that resolve both the large-scale
structure and narrow coastal fronts and currents. Our
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FIG. 1. The ocean region (508S–108N, 1008E–1708W) over which the new mapping methods have been
applied. All geographical features, both on land and sea, are included in the figure. The three dashed lines
show the location of regularly occupied XBT sections.

system is built around the weighted least squares qua-
dratic or loess smoother of Cleveland and Devlin (1988).
The computational demands of the method are less than
other popular approaches such as Gauss–Markov esti-
mation, yet the filtering characteristics are nearly as
good (Chelton and Schlax 1994). The interpolation si-
multaneously fits seasonal terms along with the spatial
components that greatly minimizes the temporal bias in
the mean. The scheme also adjusts the weighting of data
points to allow for the influence of both bathymetry and
land barriers. This reduces leakage of structure between
deep and shallow regions and produces far more realistic
coastal gradients.

We demonstrate the components of the system within
a case study covering the seas around the Australian
continent. These waters contain many dynamically in-
teresting and often unique features. In the Tasman Sea
off eastern Australia, the East Australian Current (EAC)
is a major western boundary current, with highly en-
ergetic mesoscale eddies associated with its poleward
flow (Nilsson and Cresswell 1981; Mulhearn 1987). The
Indonesian islands to the north act as a permeable barrier
to flow from the Pacific to the Indian Oceans, thus play-
ing a central role in the redistribution of mass and heat
in the global system (Godfrey and Golding 1981). Fur-
thermore, the very existence of the unique dynamics of
the Leeuwin Current flowing poleward along the west-
ern Australian coast has only relatively recently been
recognized (Cresswell and Golding 1980).

We describe procedures to assemble a complete in
situ dataset for the region and the techniques that have
been applied for estimating a gridded climatology. This
climatology is entitled CSIRO (Commonwealth Scien-
tific and Industrial Research Organisation) Atlas of Re-
gional Seas (CARS). In section 2 we present the data
used in the analysis, and detail the associated quality
control methods. The loess methodology is described in
section 3, including the topographic adjustments, and
in section 4 we specify how the system is applied to
the dataset. A description of sampling problems en-
countered and how they have been addressed is found
in section 5. Finally the results are given in section 6.
These include an analysis of the residuals, validation
against independent data and an example of the mean
fields.

2. Data

An archive of 65 000 vertical profiles of temperature,
salinity, oxygen, phosphate, nitrate, and silicate has been
assembled for the seas adjacent to Australia. Our map-
ping domain is (108N–508S, 1008E–1808, Fig. 1) al-
though the mapping procedure requires data to be drawn
from a slightly wider region (Fig. 2). These data were
primarily obtained from the World Ocean Database
(WOD98; Conkright et al. 1998), the Global Oceano-
graphic Data Archaeology Rescue project (Levitus et
al. 1994), CSIRO Marine Research archives, and the
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FIG. 2. The distribution of (a) the (T, S) casts as a function of position, (b) each property as a function of depth, (c) and (d) the (T, S)
casts as a function of year at several depth ranges. The actual domain of the CARS climatology is shown by the dashed rectangle in (a).

New Zealand Institute of Water and Atmospheric Re-
search. We have used both point-sampled stations (Nan-
sen and Niskin bottle) and continuously sampled traces,
obtained from conductivity–temperature–depth probes.

All observed level casts were interpolated onto a set
of 56 ‘‘standard depth levels’’ (see Table 1) using an
algorithm based on that of Reiniger and Ross (1968).
This uses a weighted mean of values obtained from the
linear interpolation of the two nearest data points, and
the extrapolation of the pairs of data above and below.

Using these standard levels we are able to account for
most of the structure in the surface mixed layer, the
thermocline, and the deep water region.

Since data have been obtained from several data cen-
ters, many duplicates have been identified and removed.
We also discovered numerous casts with erroneous po-
sitions and/or dates. In particular, casts with incorrect
positions were often identified when their bottom depths
were clearly greater than suggested by the local ba-
thymetry. We used the ETOPO5 (Earth Topography—
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TABLE 1. Standard depth levels used in the climatology.

Level Depth (m) Level Depth (m)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0
10
20
30
40
50
60
70
75
80
90

100
110
125

29
30
31
32
33
34
35
36
37
38
39
40
41
42

700
750
800
850
900
950

1000
1100
1200
1300
1400
1500
1600
1750

15
16
17
18
19
20
21
22
23
24
25
26
27
28

150
175
200
225
250
275
300
350
400
450
500
550
600
650

43
44
45
46
47
48
49
50
51
52
53
54
55
56

2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000
5500

FIG. 3. The percentage of each property type rejected by the screen-
ing procedures plotted against depth level. (a) Temperature, salinity,
and oxygen. (b) Nitrate, phosphate, and silicate.

5 minute) bathymetry (NOAA 1988) supplemented by
a high-resolution dataset obtained from the Australian
Geological Survey Organisation in Australian waters.
The bathymetry data were smoothed and the rejection
criteria were set such that casts were not rejected readily
in regions of large depth gradient. If the indicated cast
location was more than 30 km inland, it was deemed
to be have been labeled incorrectly. Furthermore casts
were also rejected if their documented locations implied
that they were within the 200-m isobath, but their in-
dicated depths were greater than 300 m.

Following the removal of these poorly documented
casts, the data within each cast were systematically
screened. In the case of temperature (T) and salinity (S)
data, a prior screening process was performed. The casts
were assessed in T–S space using a method that shares
features with those applied previously (Curry 1996;
Gouretski and Jancke 1999). Essentially, outliers from
a background T–S field were identified and rejected
(both T and S values). The climatology consists of fields
of salinity evaluated at a series of 0.58C temperature
levels from 22.58 to 318C. The salinity is obtained on
a 18 3 18 grid using the locally weighted methodology
described in the following section. All casts lying out-
side a three standard deviation (s) range from the mean
curve on each T level were ejected. In practice, the entire
climatology and statistic fields were generated in an
initial calculation, the variance profiles were vertically
smoothed, and data with residuals outside 3s were

flagged. Then the process was repeated, providing both
an improved climatology and tighter statistics.

Next climatological fields of each property were ob-
tained on a set of standard depth levels using the meth-
ods described in following sections. Residuals of each
property were then obtained and data were again dis-
carded when exceeding a specified multiple of s. In this
case, the multiple was set to 2.6, which for a normal
distribution represents about 1% of the data. However,
in a few regions perhaps containing whole cruises with
data offsets or a localized freshwater runoff, the rejec-
tion rate was as high as 2.5%. For example, off western
New Zealand, salinity values ,20 psu located in the
deep-water fiords were rejected. In addition, casts with
a high proportion of flagged data were rejected in their
entirety. The overall percentage of data rejected is plot-
ted against depth in Fig. 3. Note that higher proportions
of the nutrients have been rejected and that the rejected
rate tends to increase with depth.

The distributions of the data in space, time, depth,
and property after quality control procedures have been
applied are presented in Fig. 2.

3. Loess mapping

The diverse environment of the Australian region and
the sampling shortcomings provide a challenge to any
interpolation scheme and the loess filter is no exception.
We have, therefore, developed simple extensions to the
loess methodology, which substantially improve the out-
comes if not completely addressing the above factors.
The flexibility inherent in the loess method provides
clear advantages over other interpolation schemes.

We interpolate our irregularly distributed dataset onto
our chosen spatial grid by applying a space–time version
of locally weighted least squares or ‘‘loess mapping’’
(Cleveland and Devlin 1988). The data are smoothed in
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space by projecting onto spatial quadratic functions and
simultaneously being fitted by annual and semiannual
harmonic components. Fitting the spatial and temporal
components in a single step minimizes the temporal bias
in the mean. The temporal terms were only applied in
the upper 1000 m.

We wish to determine the climatological estimate of
a state variable (xn, yn, zs, tn) at some grid point (xn,f̂
yn) with standard depth zs and time tn. This is achieved
by a weighted least squares fit to the K nearest data
points to the grid point, of a four-dimensional surface
defined by the following spatial quadratics, and tem-
poral harmonics

f̂(x , y , z , t)n n s

2 25 a 1 a x 1 a y 1 a x 1 a y 1 a xy 1 a z0 1 2 3 4 5 6

4

21 a z 1 a X (t), (1)O7 j17 j
j51

where xk, yk, and zk are the longitude, latitude, and depth
of a data point, x 5 xk 2 xn, y 5 yk 2 yn, z 5 zk 2 zs,
X1 5 cosT, X2 5 sinT, X3 5 cos2T, X4 5 sin2T, T 5
2pt/365.25, and t is the day of year. Including further
terms involving x, y, and t in (1) at best provides only
marginal improvements and often leads to unrealistic
‘‘overfitting’’ of the data. The regression coefficients an

in (1) are determined by minimizing the weighted sum
of square errors

K

2 2C 5 w (f̂ 2 f ) , (2)O k k k
k51

where fk 5 f(xk, yk, zs, t). The weighting coefficients
wk, are defined by the tricubic function

3 3(1 2 r ) 0 , r , 1
w 5k 50 r . 1,

where r is the normalized distance metric, which defines
the separation of observations and estimation (grid)
point, and is defined as

2
b(x 2 x , y 2 y )k n k nr(x , y , z , d , d ) 5k k k k n 1 2[ R

1/22 2z 2 z rk s b1 1 , (3)1 2 1 2 ]R Rz b

where R defines the horizontal radius of the data ellipse
and b is a function that defines the adjustment of the
pathways between observation and grid point due to
land barriers. Furthermore Rz is the maximum vertical
radius and rb/Rb is a normalized bathymetry–distance
function, which is dependent on the bottom depth at the
data location (Dk), and the bottom depth at the grid
location (Dn).

a. 3D mapping

The terms in (1) containing the depth z and the second
term in (3) have been included to minimize vertical
discontinuities between fields due to major differences
in data distribution between levels. In such cases we
often obtain discontinuities in the temporal harmonics
which can, for example, be manifested as unrealistic
inversions in the temperature profiles. Solving for all
depth levels simultaneously along with the spatial and
temporal terms would minimize this behavior; however,
this is beyond our computational resources. Therefore
a more manageable scheme has been implemented, in
which the data on adjacent levels are included after
being downweighted appropriately. The vertical nor-
malization radius Rz in (3) is chosen so that data points
above and below the standard depth zs have equal weight
but are reduced by a factor of 0.5 times the weight of
data actually on zs. For example when zs 5 125 m, then
zs21 5 110 m, and zs11 5 150 m. Here, Rz is then an
envelope 30 m above and 50 m below zs.

b. Topographic adjustment

The scheme to adjust the weighting of casts for the
influence of varying bottom depth is called topographic
adjusted relief (TAR). The final term in (3) is the ba-
thymetry–distance function, which is used to minimize
the contamination of deep oceanic regions by highly
variable waters on the continental shelf. The normalized
function has the form

r Db k5 1 2 max 0, 1 2 m1 2[R Db n

Dk2 max 0, 1 2 l , (4)1 2]Dn

where l 5 4 controls the rate of inshore cutoff and m
5 0.01 controls the rate of offshore cutoff. These depths
are further restricted to a threshold range of 25–2000 m.
Figure 4 shows the form of this function at a range of
bottom depths. Several examples of the improved results
obtained using the TAR scheme are presented in DR. For
example, in the waters adjacent to the South Island of
New Zealand, the use of TAR has both reduced the spread
of low salinity water into the deep ocean southwest of
the South Island and also sharpened the coastal salinity
gradient. Comparing the results with individual data
points showed that these changes have produced far more
realistic fields.

The function b adjusts data-point weighting to allow
for the influence of land barriers and is a distinctive
feature of the CARS methodology. It is designed par-
ticularly to reduce inappropriate leakage of structure
across narrow headlands and islands. The method,
which is termed barrier adjusted relief (BAR), represents
the domain as a network of polygons containing subsets
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FIG. 4. The bathymetry–distance function showing its dependence
on gridpoint depth and data depth. Note that when the gridpoint and
data-point depths are similar the weights are close to unity and when
they diverge the weights tend to a minimum value. For example, as
the gridpoint depth increases, data points in shallow water are quickly
downweighted to lessen the contamination of deep-water maps by
highly variable coastal waters.

FIG. 5. The spatial distribution of weights allocated to the data
casts used in the calculation of the mean salinity at the 20-m level
for the indicated grid point (water depth 45 m). The weights for
individual casts are represented by the size of the circles.

of the data, and relationships that are specified between
pairs of these polygons. These relationships may sig-
nificantly modify the distance functions between data
and grid points in the vicinity of complex topography.
Dunn and Ridgway. (2001) demonstrate that using the
BAR system all but eliminates the unrealistic propa-
gation of ocean properties directly across land barriers.
In particular, erroneous features are removed from the
interpolated fields for the waters around New Zealand
and within the Indonesian archipelago. Figure 5 shows
how the distribution of weights associated with a grid-
point, change significantly when the TAR and BAR
schemes are applied.

4. Application to hydrology data

a. Resolution of the mean fields

The climatology is produced for the study region on
a uniform 0.58 grid. This provides appropriate resolution
for the deep ocean basins but is not sufficient to delin-
eate the finescale structure at the coastal boundaries.
Accordingly, we also generate supplementary higher-
resolution maps (⅛8) adjacent to these boundary re-
gions.

The actual resolution of the mean fields produced in
our analysis is dependent on the choice of the data el-
lipse radius R. Following Cleveland and Devlin (1988)
we allow R to vary with grid point by fixing the number
of points N used for each estimate (N 5 400). This
adjusts the effective bandwidth of the loess smoother
to match data density. While enabling us to produce
gridded estimates with maximum spatial resolution, this
feature does tend to obscure the actual smoothing scale
since the degree of smoothing of the loess filter is also
defined by the magnitude of R. A lower limit of 200

km is also imposed on R so that mesoscale eddy fluc-
tuations are appropriately smoothed in regions of abun-
dant data. This means that in such regions N is corre-
spondingly larger. For example in Fig. 5 the grid point
off southeast Australia includes some 2500 casts within
the associated data ellipse. If N is reduced to say 300
casts, then the magnitude of the resolution decreases by
about 10%; however, there is a noticeable increase in
the amount of noise in the mean fields. In data sparse
cases the 400-cast criterion is overridden and instead an
upper limit is imposed on the source radius (1500 km),
so that the implied length scale remains meaningful. In
the rare cases where the number of data points falls
below a minimum value, then no mapping is performed.
A value at this grid point is then obtained by interpo-
lation between adjacent grid points.

The resolution of the mean fields will vary over the
domain since the shape and size of the data ellipse will
tend to change slightly for each grid point. Hence, we
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FIG. 6. The spatial resolution at (a) the surface, (b) 400-, (c) 1000-, and (d) 2000-m levels for T and S
mapping. The quantity presented is the half-amplitude cutoff wavenumber (0.6R), where R is the data
ellipse radius, since this is approximately the same as that of a simple block average of the same width
(Chelton et al. 1990).

have some difficulty in representing the effective res-
olution of any property over the whole domain. In Fig.
6, the variation in spatial resolution of the mean tem-
perature is presented at several depths. This quantity is
the half-amplitude cutoff wavenumber (0.6R), where R
is the data ellipse radius, since it approximates a simple
block average of the same width (Chelton et al. 1990).
At the surface the resolution ranges from 110 km at the
Australian meridional boundaries to more than 550 km
in the southwest corner of our domain, where data are
sparse in the Southern Ocean. Furthermore, R is mod-
ulated significantly by the inclusion of the bathymetry
and barrier adjustment. For grid points at a coastal
boundary, the bathymetry dependency means that data
ellipses will both be aligned along isobaths and stretched
in the alongshore direction. Thus the interpolation will
have its greatest resolution across the continental slope
(DR). The effective resolution is thus a function of data
density, local bathymetry, and geometry, and in general
will be nonisotropic. The data ellipse in Fig. 5 associated
with a grid point adjacent to the east Australian coast
has an alongshore length double its cross-shelf length.

The loess formalism also allows us to determine a

locally weighted analog of the standard deviation of the
observations from the CARS mean climatology

K

2 2w (f 2 f )O k k k
k512s 5 , (5)K

wO k
k51

where k 5 f(xk, yk) is the CARS mean value at (xk,f
yk).

b. A priori noise

To determine whether the estimated mean fields fit
the data at the appropriate scales, we estimate the a priori
noise associated with each property. This is the small-
scale variability arising from both unresolved ocean pro-
cesses such as mesoscale eddies and internal waves as
well as measurement errors. Following Holbrook and
Bindoff (2000), we estimate this noise variance from
the difference between properties measured at neigh-
boring casts.

We have calculated the noise variance from the data
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FIG. 7. Space–time distribution of the a priori noise variance of
temperature for the Tasman Sea (408–288S, 1528–1568E).

in a region adjacent to eastern Australia for a range of
space–time scales to choose an appropriate spatial and
temporal window (Fig. 7). We require the noise estimate
that actually represents the combined effects of transient
eddy processes and instrumental errors rather than the
long-term, larger-scale signals that we wish to resolve.
The results in Fig. 7 suggest that we choose casts that
are separated by less than 100 km and 20 days. Further
testing in other regions provides a more general defi-
nition that incorporates the variable resolution of the
mapping procedure. Hence we define the a priori noise
at any grid point as being casts that are separated by
less than 0.6R and 20 days. The value of 0.6R is usually
close to 100 km, but it does fluctuate slightly below or
somewhat more above this figure depending on the data
distribution.

The data does not allow seasonal and long-term trends
in the a priori noise to be resolved. However, we are able
to determine the spatial variation of the noise statistics
over the study domain using the loess methodology. This
approach improves on the binned-mean results obtained
by Holbrook and Bindoff (2000). If fr and fs are ob-
servations of some property at cast r, and a neighboring
cast s, then the a priori noise at depth j is

K

2 2w (f 2 f )O k r s k
k512s 5 , (6)j K

2 wO k
k51

where (fr 2 fs)k is the kth difference between pairs of
casts separated by some distance L and within N days.

5. Sampling issues

a. Spatial-sampling problems

Initial results showed artifacts of the inhomogeneous
spatial distribution of our dataset in the estimated fields.
For example, the presence of close-packed clusters of
data has several undesired outcomes. Such clusters tend
to allow inappropriately short spatial scales in areas that

may have little data except the cluster. If a cluster is
near the grid point, it will tend to dominate that map-
ping. More often the source radius will expand until it
just touches the cluster and satisfies the data threshold.
This means that all the data in the cluster, being at the
maximum radius, will have a near-zero weight while the
little remaining data will have an inappropriately large
influence on the mapping.

We define a cluster to occur when more than 10 values
are located within a radius of 250 m. To reduce the
undesired effects above, clusters were removed before
mapping, and replaced by monthly averages. For ex-
ample, a cluster consisting of 50 data points in January,
would be replaced by one point having the mean value,
date, and position of all of those data. A cluster of 11
data points that occurred in different months would be
replaced by 11 mean positions, values, and dates and
so would be unchanged. This approach is somewhat akin
to the ‘‘superobservation’’ procedure that is used in op-
timal interpolation schemes (e.g., Robinson and Leslie
1985).

The loess scheme tends to become unstable when
there are gaps in the domain of any of the fitted func-
tions. This often occurs when interpolating across large
data voids or when extrapolating over much shorter dis-
tances adjacent to coastal boundaries. To compensate
for such cases, prior to the interpolation we create an
artificial (or ‘‘bogus’’) data point at the grid point of
the mapping. The bogus value is chosen to be a single
data point of full weight, placed at the grid point, with
all temporal coefficients set to zero, whose value is a
distance-weighted mean of the nearest 10% of all data
points in the ellipse. The end result is not unlike that
found in optimal interpolation where the mapping
scheme reverts to a background mean field where data
are scarce. The technique is very efficient and it appears
to be very successful in minimizing the instability. It
was applied globally despite only being necessary and
influential in data sparse regions. In Fig. 8 we test the
scheme by first removing two blocks of data, one off-
shore and another adjacent to the coast, and then map-
ping the residue both with and without bogusing. Using
the field obtained from the complete dataset as a com-
parison, we observe that the bogusing scheme has gen-
erally compensated for the removal of data and produced
relatively smooth contours through the gaps (Fig. 8b).
In contrast, in the case without bogusing the field in the
offshore bin shows unrealistic small-scale structure
while the coastal region contains an erroneous salinity
gradient (Fig. 8c).

b. Temporal-sampling problems

In most regions the use of a relatively high data
threshold enables us to resolve the seasonal cycle. This
is confirmed to some degree by the internal consistency
of spatial patterns of amplitude and phase at each stan-
dard depth. However, in a small number of cases, gaps
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FIG. 8. (a) The surface salinity obtained using the complete dataset, (b) the field obtained when bogusing
was used, and (c) the result obtained without bogusing. All the data in the rectangular region (shown by
dotted lines) were removed in (b) and (c).

in the temporal distribution tend to produce unrealistic
temporal harmonics. For example, at specific times of
the year we have observed unrealistic temperature in-
versions in the vertical profiles. These occur in regions
where the data distributions at adjacent levels diverge
widely and induce vertical discontinuities in the sea-
sonal cycles. Only a small phase difference between
levels is required to produce a relatively large apparent
temperature inversion. These features typically arise at
higher latitudes in winter, where data gaps often occur
(e.g., in the vicinity of the subtropical convergence be-
tween Tasmania and New Zealand).

At grid points containing such artificial inversions, a
vertical temperature profile is generated for each month,
and the inversions removed by iteratively smoothing
toward the mean of the inverted sections of the profiles.
Annual and semiannual harmonics are then fitted to
these monthly values, but they tend to conform very
strongly to all the nonadjusted values as they lie on the
perfect harmonics from which they were originally de-
rived. To overcome this an increased weight is applied
to any values that have been adjusted. Note that these
procedures are designed to only remove unrealistic tem-
perature inversions. In regions such as the Antarctic
Circumpolar Current where genuine inversions exist, the
procedures have little or no influence on the temperature
profiles. An alternative and more rigorous approach
would be to use the static stability restoration algorithm

of Jackett and McDougall (1995) and this will be im-
plemented in future versions of the atlas.

When there is a strong interannual signal, irregular
temporal sampling may also introduce distortions in
both the mean patterns and the seasonal harmonics. A
localized example is found in the Gulf of Carpentaria
where interannual variability in the regional precipita-
tion induces corresponding large changes in the surface
salinity. Applying a correction determined from a com-
posite rainfall index successfully removed distortions in
the spatial mean pattern caused by aliasing of the in-
terannual signal.

In the southwest Pacific (08–108S, 1658E–1808), there
is a very large El Niño–Southern Oscillation (ENSO)
related signal that is manifested by a shoaling of the
thermocline during an El Niño period. This is typically
observed as a major decrease in the sea level over the
whole region (Ridgway et al. 1993). A coupling of the
episodic nature of this phenomenon with the irregular
temporal sampling pattern produces major spatial alias-
ing of the mean fields and seasonal estimates. We ad-
dress this problem to some extent by applying a cor-
rection derived from the Southern Oscillation index
(SOI) directly to the individual data casts prior to the
interpolation stage.

The slope of SOI versus property was obtained at
every depth level on a 18 grid using locally weighted
regression. The initial fields were somewhat noisy and
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FIG. 9. Surface temperature plotted against day of year for the region (28.28–21.858S, 153.58–160.58E).
The figure legend shows the origin of each symbol and curve plotted in the figure.

a smoothing step was required. From the final form of
these fields an SOI-property slope was estimated at each
depth, latitude, and longitude. A slope value was then
obtained at each cast position and multiplied by the SOI
at the lagged cast times to provide a correction to each
property value in the region. The resultant property val-
ues at each cast were then input to the loess interpolation
stage. A more detailed presentation of these correction
approaches is in preparation.

This approach is rather simple and has some obvious
weaknesses. It is clear that the SOI only accounts for a
proportion of the interannual variability in the region.
The relationship between SOI and property values is
determined from data that are very poorly distributed
in space and time. The time lag of effects of ENSO
events is likely to vary with depth and geographic lo-
cation, whereas we have applied a constant value. In
some regions it seems ENSO forcing results in modu-
lation of the seasonal cycles, which may not be corrected
by a simple linear adjustment. However, despite these
problems, we are confident that following correction the
maps are much improved and the effects of spatially
aliasing has been greatly reduced. We also believe that
we have achieved a correction of ‘‘interannual sampling
bias’’ in some regions (where a disproportionate amount
of the data has been collected in one pole of the ENSO
cycle).

6. Results

The central outcome of any interpolation procedure
is that the residuals from the original data should be
both unbiased and also statistically consistent with the
a priori estimate of the noise. Our mapping methods are
not optimal in a strictly formal sense and hence there
is no certainty that these criteria will be satisfied. Instead
we need to verify them by analyzing a range of statistics
arising from the interpolation.

a. Fitting of temporal components

Within the upper layers of the water column, inter-
polation methods that only estimate the spatial mean of
the data will contain biases in regions where data are
not uniformly distributed by season. Unfortunately,
oceanographic data tends to be skewed to periods having
the most favorable weather conditions. The negative
influence of such irregular data distributions has been
greatly diminished within our approach by simulta-
neously fitting annual and semiannual components while
estimating the mean field.

We illustrate this improvement by the example in Fig.
9. Consider the surface temperature within a region in
the southern Coral Sea where the data are uniformly
distributed in space and time. We first apply the full
loess fit [Eq. (2)] for a central grid point (258S, 1578E)
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and obtain the mean temperature and seasonal cycle
indicated in Fig. 9. The curve closely follows the sea-
sonal pattern of the individual data points. We note that
the bin mean temperature is only 0.18C less than the
loess mean showing that the temporal distribution is
very nearly uniform. We now remove 90% of the winter
data and repeat each calculation. The loess scheme is
forced to seek further casts to replace those eliminated
resulting in a slightly longer length scale. Since the
entire dataset has been winter decimated, most of the
new points are in summer. However, the new seasonal
curve is very similar to the original one and more im-
portantly the mean is only some 0.18C cooler than the
‘‘true’’ mean. In contrast, the bin mean is now about
1.08C above the original value.

We also show how such localized biases may distort
the final mapped field and actually reduce the spatial
resolution. Figure 10a shows the mean SST for the New
Zealand region obtained from the full procedures. The
temperature contours reveal a smoothly varying spatial
pattern of temperature that faithfully represents the sea-
sonally corrected data. The plotted data were corrected
using the harmonic components obtained during the ac-
tual computation. A mean field was then generated by
only fitting loess spatial quadratics (Fig. 10b). The re-
sulting pattern shows a large amount of small-scale
structure that arises from spatial aliasing of the unre-
solved temporal variability (see the raw data included
in the figure). Clearly, to reduce this ‘‘noise’’ in the
mapped fields the length scale of the mapping would
need to be increased thus reducing the overall spatial
resolution of the procedure.

b. A priori noise and analysis of residuals

The vertical structure of a priori noise estimates, de-
rived from our definition described in section 4, are
presented in Fig. 11 for regions in both eastern and
western waters. The curves display an interesting and
varied vertical pattern. In all cases there are subsurface
maxima with the Leeuwin Current region showing dou-
ble maxima in both the T and S results. In the temper-
ature case these maxima arise from eddy and internal
wave-induced heaving of the thermocline waters (be-
tween 100 and 400 m). Hence the particularly large
values within the EAC region due to the high mesoscale
variability. We note also that the eastern regions roughly
correspond to the subregions used by Holbrook and Bin-
doff (2000) in their analysis. Although the vertical dis-
tribution of the a priori curves in Fig. 11a agree with
the previous study, our results are some 20%–30% larg-
er. This is likely to be due to the rather broader spatial
and temporal definition of a priori noise employed in
our study, compared with that adopted by Holbrook and
Bindoff.

The most fundamental test of any mapping procedure
is to examine the residuals between the mapped fields
and the original data. First, we examine the mean dif-

ference between CARS and the data for a Leeuwin Cur-
rent and a Tasman Sea region (Figs. 11c,d). The curves
show an excellent agreement, with near-zero biases in
the data means throughout the water column, apart from
small departures in the upper 50 m. The root-mean-
square (rms) difference between climatology and data
for four representative regions are included in Fig. 11.
In general the climatological values are the full seasonal
estimates including the mean and both annual and semi-
annual components. In each case the rms residual curve
lies very close to the corresponding a priori estimates.
We have included one example of the annual mean-only
CARS for the temperature in the Leeuwin Current re-
gion (Fig. 11b). A comparison with the seasonal CARS
shows that including the seasonal components has re-
duced the residuals in the upper 250 m by up to 0.88C.
Similarly, in all other cases the addition of temporal
components increased the variance accounted for by the
mapped fields.

The overall result is a strong indicator that the resid-
uals, and consequently the mapping, are statistically
consistent with our objective measure of the a priori
noise. The result is also quite robust, and shows little
sensitivity to alternate definitions of the noise. Generally
the results show that if anything the residuals tend to
be smaller than the a priori noise (see Fig. 11a), which
implies that the CARS seasonal mean may be very
slightly overfitting the data. However, this is further
qualified by examining the rms residuals between CARS
and independent expendable bathythermograph (XBT)
casts from the WOD98 archives (Fig. 11a). In the Tas-
man Sea the XBT residuals are larger than those ob-
tained from the original data. In both cases they lie even
closer to the a priori curves.

A wider perspective of the statistical consistency of
the CARS mapping procedures is provided in Fig. 12.
The normalized rms residual of temperature is presented
at the surface and 300 m for the Tasman and Coral Seas.
The spatial pattern of residuals is rather smoother than
the equivalent distribution of noise, hence the patterns
in Fig. 12 exhibit some spatial structure. However, the
normalized residual lies between 0.5 and 1.3 confirming
that the maps are statistically consistent within reason-
able limits.

c. Validation against independent data

Unless climatological fields are supported by ancil-
lary information, they represent nothing more than un-
certain content of unknown accuracy (Roemmich and
Sutton 1998). Hence we adopt a range of simple vali-
dation tests and case studies that verify specific elements
of the results. Further validation examples are presented
in DR.

The ocean surface is the one segment of the water
column where complete, independent realizations of the
mean field are available for validation. We use the Reyn-
olds (1988) analysis, which primarily derives from sat-
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FIG. 11. (a) Rms residuals between the CARS climatology and the temperature data in regions enclosing
the EAC and the central Tasman Sea (the two regions are shown in Fig. 12). Further curves show the residual
for independent XBT data in each region. (b) As for (a) but for data in a Leeuwin Current region and the
WMO square 3110. (c) Mean difference between observed T and S and CARS temporal climatology (full
line), for the indicated regions. (d) As for (c) using salinity data. (e) As for (b) but using salinity data.

←

FIG. 10. (a) Mean surface temperature for the region (508–308S, 1608E–1808) obtained with simultaneous fitting of seasonal components.
The colored diamonds represent the seasonally corrected individual data casts. (b) The mean temperature field obtained for a mean-only
calculation. The data casts are now the unadjusted values.
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FIG. 12. Rms residuals (normalized by a priori noise estimates) between CARS and temperature data
for the Tasman/Coral Sea region at (a) surface and (b) 300-m level. These residuals derive from locally
weighted versions of the rms residual and the a priori noise [Eq. (6)].

ellite SST (1981–98) and the Comprehensive Ocean–
Atmosphere Data Set (COADS, Woodruff et al. 1993)
which is based on a variety of in situ observations
(1945–89), but excluding all station casts. In Fig. 13 the
Reynolds (1988) mean field is used as the control and
the figure shows the departure of CARS and COADS
from the Reynolds mean.

Figure 13a shows that CARS is in general agreement
with the Reynolds mean, with the differences over the
whole region mostly in the 60.58C range. Within the
difference pattern, there are both coherent large-scale
features as well as more intense small-scale structure.
The latter may partially be due to sampling shortcom-
ings, however, at least a portion of this difference struc-
ture arises from the mismatch of the relatively coarse
Reynolds mean with the high resolution of the CARS
field. For example, the negative anomalies surrounding
New Zealand result directly from the Reynolds fields
smearing over the sharp frontal characteristics of the
subtropical front, the East Auckland Current, and the
Tasman front. Furthermore, both the degree of smooth-
ing and the 18 gridding means that boundary currents
such as the EAC and the Leeuwin Current are less well
resolved in the Reynolds results.

Inspection of Fig. 13a suggests that there is an overall
negative bias, which calculation confirms to be

20.108C. There is likely to be a contribution to this bias
from the tendency for the surface station data to actually
represent the temperature just below the surface. In ad-
dition the rms difference is only 0.318C, which is only
slightly greater than the value for the COADS–Reynolds
difference (0.288C). The most striking feature is in the
southwest, where we observe a spatially coherent neg-
ative anomaly of up to 1.08C. There are a few localized
anomalies of either sign that may be caused by sampling
shortcomings (e.g., the positive anomaly in the central
Tasman). We have also produced (but have not shown)
comparison plots of the annual amplitude from the re-
spective climatologies. There is consistent agreement
between all the products with CARS perhaps showing
the most spatial structure. This is confirmed by the re-
sults from another high-resolution satellite product
(Walker and Wilkin 1998).

A further comparison of CARS SST is now made
with in situ observations. These consist of results from
three long-term XBT sections (Fremantle–Singapore,
Sydney–Wellington, and Brisbane–Fiji), which are
shown in Fig. 14. In each of the sections, CARS agrees
to within 60.258C of the XBT mean, which is also well
within the confidence limits. This is the about the same
level of agreement as the other climatologies (Reynolds
and COADS). That is apart from at the Sydney end of
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FIG. 13. Maps of the following SST climatology differences: (a)
CARS–Reynolds, (b) COADS–Reynolds.

FIG. 14. Differences between the mean SST from long-term XBT
observations and CARS (full line), Reynolds (diamonds), and
COADS (dashed) along the three sections or transects (a) PX34, (b)
PX30, and (c) IX1. The Tasman Sea transects PX34 and PX30 have
been occupied four times per year since 1991 (Bailey et al. 1993).
The IX1 transect has been occupied every 2–4 weeks since 1983
(Meyers et al. 1995). In each case the dotted lines represent the 95%
confidence limits on the XBT meanthe PX34 section (Fig. 14 top). Here the three estimates

diverge in concert by up to 18C from the XBT value
and lie well outside the 95% envelope. Since the XBT
program covers the decade from 1991 and the data used
in the other estimates are skewed toward a much earlier
period, we suggest that this is a manifestation of a de-
cadal or longer change in the regional circulation pat-
tern. We also note that the PX34 transect crosses the
large positive anomaly in the central Tasman Sea, seen
in Fig. 13a. This comparison shows that in this region
CARS agrees more closely with the XBT mean and that
Reynolds is, if anything, slightly cool.

Finally we use the Fremantle–Singapore (IX1) section
to examine the ability of CARS to represent the sub-
surface structure. The majority of the temperature dif-
ference between CARS and the XBT mean lies between
60.258C although there are several isolated features that
diverge by more than 0.58C (Fig. 15a). For example, at
268S, a large negative anomaly is caused by the XBT
section resolving a small-scale structure associated with
the local bathymetry, which is beyond the resolution of

CARS. The task of characterizing the annual cycle is
far more demanding of the data than characterizing the
mean. Here CARS appears to faithfully represent the
general features of the annual amplitude and phase
found in the XBT data (Figs. 15b,c). In particular, it
captures the subsurface location of the maximum in the
amplitude at 128S and 150-m depth. Above 300-m
depth, where the amplitude has a significant magnitude,
the phase patterns show broad agreement.

d. An example of the CARS mean fields

We provide an example of the mean fields generated
using the extended loess methods, restricting our atten-
tion to the eastern portion of the domain, the Tasman
and Coral Seas (458–108S, 1458E–1808). In Fig. 16 we
present both the mean and rms of salinity at 150 m. The
mean field reproduces the large-scale pattern of water
mass distribution and broad frontal structure observed
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FIG. 15. Comparison of CARS temperature fields with results from
the Fremantle–Singapore (IX1) high-density XBT section. (a) Mean
temperature difference (CARS 2 XBT) along IX1 section, the am-
plitude of the annual cycle from (b) XBT data and (c) CARS, and
the phase from (d) XBT data and (e) CARS.

FIG. 16. Salinity at the 150-m surface for the eastern segment of the CARS domain (458–108S, 1458E–1808). (a) Mean from CARS, the
hatched region indicates regions with depth ,2000 m, (b) rms variability (colour contours) with contours of the mean field [from (a), thin
line contours] superimposed, and (c) mean from the WOD98 climatology (Conkright et al. 1998).

in other climatologies (Levitus 1982; Sokolov and Rin-
toul 2000). However, the higher resolution of the CARS
fields, obtained by the succession of measures described
previously, has also been able to represent the inter-
action of these features with the bottom topography and
coastal boundaries.

At this level the most prominent input of salinity
occurs in the northeast, where a high-saline tongue
spreads westward north of Fiji. This is associated with
the Subtropical Lower Water, which is actually formed
in the central Pacific region (Donguy 1994). Between
208 and 308S the region is characterized by minimal
salinity gradients and very low variability (,0.08).
However, adjacent to the eastern Australian coast there
is a sharp alongshore gradient, giving evidence of both
coastal freshwater input and a major offshore boundary
flow. This is of course the EAC and the high-salinity
filament (35.55–35.6) that spreads poleward along
1558E further reveals its influence. On the western flank
of this feature we observe the separation of the main
portion of the EAC from the coast (Godfrey et al. 1980)
with a remnant proceeding southward. The high degree
of variability is associated with the regular formation
of mesoscale eddies in this region (Nilsson and Cres-
swell 1981).

The separated EAC feeds into the Tasman front (Mul-
hearn 1987), which meanders its way across the central
Tasman Sea (with increased variability). The path of
this current is observed to be controlled at least in part
by its passage across the major ridge systems bisecting
the Tasman basin (Mulhearn 1987). Figure 16 shows
that the CARS field has been able to resolve the details
of the circulation around New Zealand. The Tasman
Front reattaches to the land at North Cape and proceeds
around the northern and eastern boundaries of New Zea-
land forming semipermanent eddy features along the
way (Roemmich and Sutton 1998).
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A compelling illustration of the improvements ob-
tained using our interpolation system is obtained by
comparing the CARS result in Fig. 16a with the same
salinity field at 150 m obtained from a large-scale, glob-
al climatology (Fig. 16c, WOD98).

7. Discussion

a. Choice of interpolation scheme

A central component of the mapping procedure is of
course the choice of interpolation method. A variety of
algorithms for estimating horizontally gridded values
from irregular data have been described in the ocean-
ographic literature. These include: binned averages
(Wyrtki 1975), successive correction (Gomis et al.
1997), local least squares polynomial fitting (Chelton et
al. 1990), natural or smoothing splines (McIntosh 1990;
Lozier et al. 1995), variational inverse methods (Bras-
seur et al. 1996), and Gauss–Markov estimates (Breth-
erton et al. 1976). Further methods such as the averaging
of vertical profile equations (Teague et al. 1990) and an
empirical orthogonal function approach (Holbrook and
Bindoff 2000) exploit the vertical correlation of ocean-
ographic data. While the method of choice in many
applications is Gauss–Markov (GM) or optimal inter-
polation (Bretherton et al. 1976), we have used a rel-
atively unknown method of locally weighted least
squares (loess).

The choice is not at all clear cut. The GM method is
attractive because it provides an unbiased estimate of
the gridded field along with estimates of the mapping
error associated with the data. However, for large da-
tasets it is often prohibitively expensive and hence is
usually applied in a suboptimal form. It also requires a
somewhat subjective choice of background mean and
correlation function. These choices are not required in
the loess scheme, which has at least an order of mag-
nitude less arithmetic operations than does the GM al-
gorithm (Chelton et al. 1990; Brasseur et al. 1996). This
aspect has become less important as the actual CPU time
used in the mapping component of the processing se-
quence represents only about 2.5% of the whole pro-
cedure. While the filtering characteristics of the loess
smoother are almost as good as for GM (Chelton and
Schlax 1994), a mapping error field is not readily ex-
tracted from the calculation.

The major reason for choosing the loess scheme came
down to its greater flexibility in being able to incor-
porate features allowing for the spatial and temporal
complexity of the data. For example, it is capable of
fitting seasonal components in a single step with the
mean, thus minimizing any temporal bias in the esti-
mate. Furthermore it readily allows useful further ex-
tensions such as our TAR and BAR schemes and 3D
mapping. This does not, of course, preclude the incor-
poration of these latter features into a GM scheme.

b. Isobaric or isopycnal surfaces?

A further defining element of any mapping system
concerns the surfaces on which properties are averaged.
The traditional approach has been to average properties
along isobaric levels (e.g., Levitus 1982). However,
since mixing in the ocean occurs on density surfaces,
recent studies indicate that such isobaric averaging may
distort the mean fields (Lozier et al. 1994; Curry 1996;
Gomis et al. 1997). We have chosen to use isobaric
(actually depth levels) to perform the averaging for sev-
eral technical reasons.

First, since we require values on depth levels, if the
data are averaged along isopycnals, a subsequent ver-
tical interpolation step is required. A more serious con-
cern arises from the presence of dynamically unstable
casts, which must be repaired prior to the averaging
process (Gomis et al. 1997; Jackett and McDougall
1997). These difficulties are probably manageable; how-
ever, some more fundamental problems are encountered
when we attempt to include temporal cycles in our curve
fitting. This is because the depth of the neutral surfaces
varies seasonally along with properties such as T and
S, which are defined on these surfaces. Again this does
not represent any difficulty as long as we remain in
density space. However, as soon as we require results
on depth surfaces we are faced with a myriad of tech-
nical dilemmas with no clear and unambiguous solu-
tions. A further disadvantage of operating in an iso-
pycnal framework is that we cannot easily incorporate
the influence of the bathymetry into the mapping
scheme.

In summary, we are again faced with a choice be-
tween two worthy approaches. While isopycnal aver-
aging is clearly more consistent with the underlying
physics, it is far more demanding, requiring us to solve
some quite complex technical problems. It also lacks
the flexibility inherent in using the loess approach with
depth levels. Having said that, we are continuing de-
velopment of methods that will produce an isopycnally
averaged version of the interpolation system.

We note that there does not appear to be a consensus
on this issue within the oceanographic community.
While Lozier et al. (1995) have presented a new mean
field of the North Atlantic on isopycnal surfaces, many
recent climatologies have used an isobaric approach
(Boyer and Levitus 1994; Brasseur et al. 1996; Reynaud
et al. 1998).

c. General application of the method

The methods presented here provide an improved ap-
proach to the interpolation of ocean properties. The re-
sults from the Australasian case study demonstrate that
the range of procedures included in our system produce
mapped fields that faithfully represent the data and ef-
fectively delineate boundary currents and frontal re-
gions. The separate components of the system combine
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to produce an accurate representation of this structure
although the relative contributions of each component
remain difficult to define. In addition, the relative im-
portance of each component is likely to vary depending
on the local characteristics of the region.

This leads us to question how the mapping system
may be applied more generally. Would climatologies of
the open ocean benefit from these procedures? In what
areas of the global ocean would the techniques improve
existing climatologies? Are there regions in which this
system would actually produce inferior results? Clearly
the greatest benefit of the TAR and BAR schemes is
obtained in regions with complex geomorphology such
as the Indonesian archipelago and New Zealand. Away
from land masses, in deep water, the advantage gained
may not be so obvious. However, open oceans all have
boundaries of some form that require more detailed cov-
erage. It is at these boundaries where the large-scale
climatologies fail to resolve the narrow but very im-
portant current systems. Furthermore, with increasing
depth the geometry becomes complicated even in open
basins with implications for the trajectories of deep and
bottom water masses.

We have shown that the inclusion of the seasonal
terms in the interpolation both reduces the seasonal bias
and increases the spatial resolution within the surface
layers. This feature has perhaps the most universal ap-
plicability. The only qualification is likely to be where
data densities are low causing instabilities in the higher-
order temporal terms. In fact, we did not include semi-
annual components in the nutrient calculations for this
reason.

We note that despite the innovations presented here,
the importance of obtaining a high-quality dataset re-
mains of central importance. We therefore continue to
refine our data assessment techniques as data are added
to our archive. Future developments of our system in-
clude extending the region of coverage, mapping on
isopycnal levels, and determining appropriate mapping
error schemes.

Finally, the mean fields of CARS are available online
at http://www.marine.csiro.au/;dunn/eezpdata/at-
las.html. The fields include temperature, salinity, oxy-
gen, nitrate, phosphate, and silicate at 56 standard
depths. Full documentation is also included along with
several simple routines to access the fields.
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