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ABSTRACT

Ocean surface circulation can be estimated by automated tracking of thermal infrared features in pairs of
sequential satellite imagery. A 7-yr time series of velocity, extracted from thermal imagery of the East Australian
Current using the maximum cross-correlation (MCC) technique, provides enough measurements for a more
statistical evaluation of the method than has previously been possible. Excluding 1 yr with extensive cloud cover,
the method produces about 8000 velocity estimates per month with some seasonal variation. Method precision
is estimated to be between 0.08 and 0.2 m s21 rms, the lower value with more restrictive compositing. Mean
flow, time-dependent flow, and eddy kinetic energy from the time series are compared with values derived from
a dynamic height climatology, altimeter analyses, and drifter datasets in the region. The observations reproduce
similar features in the flow. The differences between the observations are discussed in relation to noise in the
methods and differences in the types of velocities they measure.

1. Introduction

Over the last three decades oceanographers have ben-
efited from the frequent global coverage of infrared
brightness temperatures (BTs) of the sea surface mea-
sured by satellite-borne radiometers. In addition to the
routine derivation of sea surface temperature (SST), in-
frared satellite data have been used to estimate the sur-
face circulation by calculating the motion of the thermal
features in successive images (Emery et al. 1986; Holyer
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and Peckinpaugh 1989; Kelly 1989; Cote and Tatnall
1995). There are compelling reasons to develop this
technique into a robust, routine analysis: the spatial and
temporal coverage of velocities derived from thermal
imagery would complement both conventional ship-
board and moored observations and those derived from
satellite altimeter measurements.

Velocity was first estimated in a sequence of images
by tracking features by eye, a method which is subjec-
tive, as the results may not be repeated by another per-
son, and impractical for the routine analysis of large
datasets. Greater computer power has allowed many au-
tomated feature-tracking methods to develop that use a
suite of criteria, such as wavelets (Liu 1997), gradient
thresholds (Holyer and Peckinpaugh 1989), and neural
networks (Cote and Tatnall 1995) to identify features
in sequential images. These methods require consider-
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able user input to determine criteria that define certain
features and, in some cases, extensive preparation of
imagery. The maximum cross-correlation (MCC) tech-
nique (Schmetz and Nuret 1987; Emery et al. 1986;
Kelly and Strub 1992) is a more straightforward method
of pattern tracking that requires less user input. The
method matches patterns in all possible subwindows of
one image with those in a sequential image, avoiding
the computational problems of searching for specific
features. Areas of weak pattern tracking can be rejected
automatically in postprocessing of the velocities, re-
ducing the level of human involvement other feature-
tracking methods require.

Velocities from the MCC method have also been com-
pared to velocities derived in a different manner from
sequential thermal imagery. A number of authors find
velocities by inverting a heat equation to find the dis-
placements most likely to produce the changes in tem-
perature between two images (Kelly 1989; Zavialov et
al. 1998; Vigan et al. 2000a,b). Kelly and Strub (1992)
found that the inversion method produced virtually the
same velocities as the MCC technique for considerably
more effort. The simplicity of the MCC method, com-
pared to other feature-tracking techniques and the in-
version method, recommend it for the routine extraction
of long velocity time series from thermal imagery.

Although the basic technique is straightforward, in-
terpreting the results is not as clear. Only a small number
of sequential images have been used in tests of the MCC
method (or any other feature-tracking method) and few
ancillary measurements exist to compare to the veloc-
ities. Tokmakian et al. (1990) evaluated the method by
comparing MCC velocities from a short image sequence
with dynamic height and ADCP measurements and by
comparing MCC velocities derived from a short se-
quence of synthetic images with model fields. They sug-
gest noise in the feature-tracking method is between 0.1
and 0.25 m s21 rms. Kelly and Strub (1992), also using
imagery from the California Current region, found MCC
velocity magnitudes were 35% lower than ADCP ve-
locities and about 55% lower than drifter velocities over
2.5 days. They noted that the comparison of all three
velocity measurements illustrated only how widely sam-
pling techniques could differ and still be useful. Al-
though they make a good point, the oceanographer is
left uncertain as to how much can be gained by extract-
ing MCC velocities from thermal imagery.

Here we apply the technique to 7 yr of thermal im-
agery from the East Australian Current (EAC) region
and derive several empirical measures of the method.
The high density of current measurements, made pos-
sible by an archive of almost every satellite pass over
the area, allows us to estimate noise in the method as
well as compare the velocities with other multiyear da-
tasets in the region. We begin with a discussion of the
MCC method, show velocities derived from the East
Australian thermal imagery, and estimate method pre-
cision. Finally, we compare the MCC velocities with

velocities from climatology, drifters, and altimeter mea-
surements in the region and summarize our results.

2. Methods

a. Observations

Satellite infrared images were obtained from the Ad-
vanced Very High Resolution Radiometer (AVHRR)
flying on the National Oceanic and Atmospheric Ad-
ministration polar-orbiting satellites. The High Reso-
lution Picture Transmission data were downloaded from
the satellites as they flew over a receiving station at the
Commonwealth Scientific and Industrial Research Or-
ganisation (CSIRO) located at Hobart, Australia. The
higher-resolution images (about 1 km) available directly
from the satellite are preferable to the more widely avail-
able lower-resolution (about 4 km) Global Area Cov-
erage data, primarily because they allow the displace-
ment of features to be determined to greater accuracy.

The passes were geolocated with a package developed
at CSIRO. The navigation software solves for an orbital
trajectory that minimizes the offsets of observable
coastline from a template coastline over a period of
about 10 days. The attitude model assumes no error in
pitch and constant yaw and roll error in each pass over
the receiving station. The accuracy of the navigation is
estimated at about 1 km rms, based on residuals from
the coastline fit.

Any errors in geolocation between a pair of images
will appear as a spurious velocity when determining the
displacement of thermal features. A 1-km rms error in
the displacement between images separated by 8 h, an
average time separation, will result in a 0.05 m s21 rms
error. Errors of this magnitude are small compared to
most of the currents we expect in the EAC.

Clouds in the imagery must also be flagged to reduce
spurious feature tracking. Clouds were detected in the
imagery using a method based on Kriebel et al. (1991),
which utilizes a series of threshold tests on individual
AVHRR channels as well as differences between the
three infrared channels.

b. The maximum cross-correlation technique

The movement of features between two images is
estimated by computing the cross correlation of the tem-
perature between windowed portions of the images. The
first image is divided into subwindows (one such sub-
window is shown schematically by the solid black box
in Fig. 1) and the cross correlation computed between
each subwindow in the first image and subwindow-sized
portions of the second image. Cross correlations are
computed in a search area (dashed box) corresponding
to the largest expected displacement of the features from
their location in the first image. The location of the
subwindow in the second image that produces the high-
est cross correlation with the subwindow in the first
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FIG. 1. Schematic of two successive images showing the location
of a subwindow in the first image (solid box) and the location of the
best match in the second image (solid box). The best match is found
by computing the cross correlation between the subwindow from the
first image and each subwindow-sized section within the search area
in the second image (dashed box) and choosing the position with
highest cross-correlation value. The velocity is the displacement di-
vided by the time between the images. FIG. 2. Maximum correlation coefficients of SST plotted vs BT

show that the BT coefficients tend to be higher, which indicates better
pattern tracking.

image (solid box in second image) indicates the most
likely displacement of the thermal features (arrow). The
velocity is the displacement divided by the time sepa-
ration between the images.

The method has two main parameters: the size of the
subwindow and the extent of the search in the second
image. The size of the subwindow is a balance between
containing enough features for tracking and smoothing
out the structure of the flow. Spatially filtering the im-
ages and repeating the feature tracking showed that fea-
tures between 10 and 20 km scale provide much of the
tracking. These scales are most likely produced by wind,
solar radiation, and instabilities that break geostrophic
constraints but are being carried by the larger-scale
flows. We attempted to find a justification for subwin-
dow size, as well as other method parameters, using
output from a 1-km resolution, three-dimensional ocean
model, but were unable to create the necessary tem-
perature scales or maintain them when they were intro-
duced. Lacking a model test for the subwindow size,
we chose to use a square with 30-km sides, which ap-
peared to visually strike the balance better than 20 or
40-km square subwindows. We note that the MCC tech-
nique has been used successfully in many different
ocean regions with a range of subwindow sizes, gen-
erally between 25 and 50 km, most often in the 30–40-
km range (Domingues et al. 2000; Emery et al. 1992;
Tokmakian et al. 1990; Kelly and Strub 1992).

The search area, or range, over which to search in
the second image is determined by the speed of the
expected currents. In the EAC region the range is de-
termined for each image pair, based on the time sepa-
ration between the images, to capture currents of at least
1 m s21. Velocities were derived from all image pairs
having time separations between 3 and 13 h. Both Tok-
makian et al. (1990) and Emery et al. (1992) find the
MCC velocities are most successfully derived when the
time between images is 12 h or less.

Cross correlations are calculated if 60% of the pixels

in a subwindow are within a range corresponding to the
surface thermal signal (we specify 88–258C for the EAC
region). This tolerance allows thermal patterns in areas
with some cloud cover to still be successfully tracked.
In addition, denser velocity coverage was produced, at
the expense of statistical independence, by overlapping
subwindows by 15 km.

c. Feature tracking with brightness temperatures
(BTs) versus SST

We found that imagery from the AVHRR channel 4
(10.8 mm) produced more robust feature tracking than
imagery derived from a multichannel SST product. Ve-
locities computed using several pairs of concurrent
channel 4 BT and SST images from the east coast of
Australia and the coast of California were often in dif-
ferent directions. The individual correlation coefficient
distributions were similar in shape, but had maxima
slightly displaced relative to one another. The maximum
correlation coefficients from velocities computed with
BT were consistently higher than those from SST (Fig.
2), indicating more robust pattern tracking in the BT
images.

The feature tracking is likely more robust in BT im-
ages because they contain less noise than SST images.
The lower the noise in two signals, the closer the cor-
relation coefficient to the noise-free value (Emery and
Thomson 1998). Additional noise can arise in SST be-
cause it is derived using the difference of temperatures
from AVHRR channels 4 and 5. Differencing increases
the noise in the SST if noise in the individual channels
is uncorrelated and decreases it if the noise is correlated.

To gauge the effect of noise in channels 4 and 5 on
the SST, the error variance was derived from a multi-
channel SST algorithm and values calculated for a range
of zenith angles and temperatures. Assuming the noise
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FIG. 3. Value of the correlation cutoff as a function of the search
range. Higher-correlation cutoffs reflect greater chances of obtaining
a high-correlation coefficient by chance.

in channels 4 and 5 is equal and uncorrelated, the noise
in SST is about 3 times greater than the individual chan-
nels. If the noise is correlated, error in SST is reduced
by only 5% from the individual channels. Therefore,
even a small amount of uncorrelated noise in the in-
dividual channels will be amplified in the SST images
and lead to smaller correlation coefficients when feature
tracking.

Since the MCC method relies only on variations of
temperature within a subwindow, not the accuracy of
the SST, images derived from channel 4 are preferable
over the multichannel SST or channel 5 alone (which
has less infrared signal from sea surface temperatures
than channel 4). Similarly, when deriving thermal gra-
dients Strub et al. (1997) also advocate using channel
4 BT to avoid introducing additional noise. All of our
analysis was done using channel 4 BT imagery.

d. Filtering the vectors

After all possible vectors have been derived from an
image pair, several filters are applied to improve the
quality of the velocities. We use two filters, first re-
moving velocities resulting from poor pattern matches
and then requiring a degree of spatial coherence in the
velocity field.

Velocities produced by weak feature tracking can be
removed by keeping vectors associated with only the
highest maximum correlation coefficients. We deter-
mined a level for rejecting coincidental pattern matches
by correlating images from four different ocean regions
with one another and finding the 95 percentile of the
maximum correlation coefficients. Since all the corre-
lations are random pattern matches, the 95 percentile
can be used as a cutoff when correlating sequential im-
ages to ensure that most of random pattern matches are
rejected. The cutoff value starts at 0.6 for a range of 5
km and increases with increasing range (Fig. 3) as the
chance for higher spurious maximum cross-correlation
coefficients increases. Our values are consistent with
those recommended by Kelly and Strub (1992) who
performed a similar analysis using imagery from the
California coast.

Second, vectors are also filtered by requiring some
spatial coherence. Each velocity is required to agree
within a specified amount with a specified number of
the neighboring vectors or it is removed. In this study,
we required each vector have two immediate neighbors
with displacements matching within 5 km. These num-
bers were chosen by testing the filter on a subset of data
and picking the values that appeared to best remove
randomly oriented vectors embedded in the more co-
herent ocean circulation patterns. This is a somewhat
subjective choice and other users of the technique
should regard these parameters as a starting point, ex-
perimenting and altering as they see fit [e.g., see Barton
(2002) for another filtering technique].

3. Results

a. Data distribution

Feature tracking in pairs of sequential images pro-
duces velocities in regions where both images are cloud
free and thermal features are prominent enough to track.
Velocities from a particularly clear image pair show the
level of detail that can be resolved by the method (Fig.
4). Two warm tongues of water extend southward and
have almost entirely enclosed a triangular region of
colder water. Strong anticyclonic circulations around the
warmer tongues and cyclonic circulation around the
colder enclosed water correspond to the directions ex-
pected from a geostrophic balance. Feature tracking is
most successful along the edges of the warm tongues,
where thermal gradients are strongest, and poor in the
centers of the tongues, where thermal gradients are
weakest.

The number of velocities that can be extracted from
the thermal imagery also varies widely in time. Some
seasonal signal is evident in the number of velocity
vectors per month over the entire time series (Fig. 5),
probably the result of seasonal cloud cover. August
through January have considerably more cloud-free pe-
riods and produce more vectors than other months. Most
striking is the large reduction in vectors in 1999 due to
the cloud cover associated with a strong La Niña. Due
to the poor return in 1999, further analyses with the
MCC velocities exclude this year. Excluding 1999, an
average of 8000 vectors per month can be expected over
the roughly 1.5 3 106 km2 of ocean.

Examining the velocities by spatial distribution shows
measurements are more concentrated near the Australian
coast, dropping off with distance away from the coast
(Fig. 6). The larger number of measurements are par-
tially due to the frequent occurrence of a cloud-free strip
extending along the coast, presumably caused by dry
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FIG. 4. MCC velocities, derived from a pair of thermal images on 16 Aug 1997, show the
formation of a cyclonic eddy as a warm arm of the East Australian Current wraps around a
triangular region of cooler water. Clouds and land show up as black regions in the thermal image
plotted underneath, as do a few lines of data dropouts.

FIG. 5. Number of MCC velocity vectors extracted from the EAC region binned by month. In general, the spring and summer months
produce more vectors. Observations of the sea surface were considerably reduced throughout 1999 due to greater cloud cover.

winds from the land. The strongest thermal gradients
are also found near the coast and in the region where
the current separates from the coast (roughly 328–368S),
which contributes to the dense sampling.

b. Velocity composites

Patchiness in the velocities due to intermittent cloud
cover can be reduced by making a composite over sev-
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FIG. 6. Number of vectors binned by location for 1993–99. Sam-
pling is more frequent at the coast where thermal gradients are stron-
gest and cloud cover less prevalent.

eral days. The clouds tend to move quickly over a day
or two while the underlying ocean circulation remains
relatively constant. The second panel of Fig. 7 shows
a 3-day composite in 30-km bins centered on 16 August
1997, which contains the vectors in Fig. 4. Velocities
from image pairs over the entire 3 days have filled in
blank areas in Fig. 4 where weak thermal gradients and
clouds prevent feature tracking.

A time series of composites show the evolution of
the mesoscale features given several relatively cloud-
free weeks. In the first composite a warm tongue extends
down the coast and another branches directly offshore
farther north. Velocities in the colder water seaward of
the warm tongue are directed westward, starting the
formation of the cyclonic eddy seen clearly in the second
composite. Velocities at the bottom edge of the cooler
triangular region are mostly westward, bridging the gap
between the two warmer tongues. In the next two com-
posites the cooler water moves farther west and the
southernmost portion of the warm tongue is pinched
off. As the cooler water progresses toward the coast the
strong southward velocities at the coast slow down and
change to northward flow.

In addition to producing more complete pictures of
the circulation, making composites also condenses the
large number of velocities into a dataset that is easier
to handle. The velocities can also be placed on a specific
grid in space and time for comparison or combination
with other measurements.

Velocities were averaged over a variety of day lengths
with a specified minimum number of velocities in each
composite velocity. The results are particularly sensitive
to the choice of the minimum number of velocities in
a composite. Raising the minimum reduces the number
of vectors; however, they are more representative of an
average over the time period and contain less noise. We
will show results from two types of 3-day composites:
a lower threshold case, where all composite velocities
are kept regardless of number of velocities that went
into them, and a higher threshold case, where three ve-
locities are required in a 30-km box over the 3-day
period before the composite velocity is kept.

c. Estimates of method noise from covariance
functions

The precision of the MCC method is estimated by
computing lagged covariances of the velocities in space
or time, binning them according to lag, and averaging
over all the values. If the noise in the velocities is un-
correlated, it should average out in the covariance at all
lags except at zero lag. In other words, the covariance
should reflect the signal variance at all lags except at
zero lag where the variance is a sum of the noise and
the signal variances. The noise in the method can be
estimated from the jump between the computed co-
variance at zero lag and the extrapolated value of the
signal variance at zero lag.

The raw vectors were subsampled to a 30 km 3 30
km grid to ensure that each velocity was independent
and composites calculated in 3-day segments. Covari-
ances were derived from each composite by lagging
velocity measurements in space, multiplying them, and
binning the results by the lag in distance. The process
was repeated for each composite and the covariances
within a bin averaged (Fig. 8).

To estimate the value of the signal variance at the
origin, a velocity covariance of the functional form pro-
posed by LeTraon and Hernandez (1992) has been fit
to the lagged covariances of both components of ve-
locity. The difference between the estimated zero cross-
ing from the LeTraon and Hernandez (1992) function
and the observed value suggests that velocities derived
in this manner are precise to about 0.2 m s21 rms. Other
ways of estimating the zero crossing with other func-
tional forms produced only small differences.

An estimate of the noise variance was made in a
similar manner with the velocities from the higher
threshold composites. The variance at all lags is reduced
(Fig. 9). The estimated signal variance is reduced by
about 20%. Apparent method precision, from fitting the
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FIG. 7. A series of 3-day composites of MCC velocities from August 1997, each plotted on top of a thermal image within the time period,
show the evolution of a strong cyclone as a seaward warm tongue moves westward, trapping a triangular region of cooler water, and pinching
off a warm tongue of water against the coast.
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FIG. 8. Lagged covariance of the (left) zonal velocity in the zonal direction and (right) meridional velocity in the meridional direction
from the lower threshold composites.

FIG. 9. Lagged covariance of the (left) zonal velocity in the zonal direction and (right) meridional velocity in the meridional direction
using covariances from composites with the higher threshold.

same functional form, is about 0.08 m s21 rms, a factor
of 2 less than the previous estimates. Presumably re-
quiring more vectors in the composite velocities has
reduced the noise in the measurements and removed
some signal associated with variability at timescales less
than 3 days.

4. Comparison of the MCC currents with other
observations

a. Mean flow

The MCC currents were averaged over the 6-yr time
series and compared to currents calculated from the dy-
namic height relative to 2000-m depth from the CSIRO
Atlas of Regional Seas (CARS) climatology (Fig. 10)
(Ridgway et al. 2002). The mean MCC velocities are
similar whether they are calculated from the velocities
before composites are made or from the different types
of composites. An arbitrary choice was made to show
only velocities where there are more than 40 degrees of

freedom in the sampling [where the degrees of freedom
are the number of 10-day segments sampled based on
a characteristic timescale in the region (Wilkin et al.
2002)].

The MCC and CARS mean flows share several fea-
tures. The velocities are remarkably similar in the north-
ern part of the region. Both show southward velocities
of about 0.4 m s21 close to the coast where a persistent
current is reliably found (Nilsson and Cresswell 1981;
Godfrey et al. 1980). Farther eastward, the southward
flows in both datasets are about 0.15 m s21, drop to
near zero, and then show weak reversal to northward
flows about 100 km from the coast.

Farther south, in the region where the main current
separates from the coast (Godfrey et al. 1980), both
observations show a bifurcation of the southward flow.
One arm of the flow continues south along the coast
and the other turns eastward. The greatest difference
between the two datasets is in the magnitude of the
eastward arm of the flow near 34.58S, 1558E. The CARS
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FIG. 10. The 6-yr mean velocity (1993–98) from (a) the MCC velocities and (b) the velocity calculated from dynamic height relative to
2000 m from the CARS climatology. Both show strong southward flows along the coast turning eastward between 328 and 348S. Southward
and eastward flows of weaker magnitudes are found farther to the south.

climatology shows an offshore jet of strength equal to
the mean coastal current farther north. The average
MCC velocity is weaker. There are a number of reasons
a difference between the velocities might occur. Al-
though most of the EAC region is heavily sampled in
the CARS climatology (Ridgway et al. 2002), this par-
ticular location is at the edge of the heavy sampling and
the velocities might be affected by the nearby sparse
data distribution. In addition, the velocities have been
derived from the CARS dataset assuming the flow at
2000 m depth is negligible, an assumption that current
meter records show may often be invalid (Mata et al.
2000).

South of the separation region the circulation is dom-
inated by the mesoscale with intense cyclones and an-
ticyclones forming (Nilsson and Cresswell 1981). Not
surprisingly, the mean flow in both datasets is weak.
Flow near the coast continues southward with regions
of eastward circulation farther seaward. The locations
of the eastward flows differ between the datasets, but
both show weak flows of generally less than 0.2 m s21.

b. Time-dependent circulation
The only dataset in the region with spatial and tem-

poral coverage coverage similar to the MCC velocities

are time series of sea surface height from the TOPEX/
Poseidon (T/P) altimeter. The 6-yr mean from the MCC
velocities was subtracted and the anomaly velocities
compared to geostrophic velocities computed from the
altimeter sea surface height anomalies. Sea surface
heights were filtered over approximately 65 km, or 11
along-track points, and geostrophic velocities computed
from along-track differences at that scale. The choice
of filter length was guided by the comparisons of altim-
eter-derived and in situ velocities in Strub et al. (1997).
Any MCC velocity that fell within 1 day and 20 km of
an altimetric velocity was projected into the altimeter
across-track direction and the velocity components com-
pared.

Over the 6 yr of data, more than 2000 comparisons
were made between altimetric velocities and velocities
from the MCC composites. The rms differences between
the altimetric and MCC velocities were 0.25 m s21 for
the lower-threshold and 0.3 m s21 for the higher-thresh-
old composites. These numbers are higher than the es-
timates of noise in the MCC method (0.2 and 0.08 m
s21 for the low and high composites, respectively) and
the estimated accuracy of anomaly geostrophic veloci-
ties from the altimeter sea surface heights is 0.07 m s21,
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based on an error of 0.03 m in height anomaly, the
along-track distance, gravity, and the Coriolis parameter.

Differences in the way the velocities are sampled
should also contribute to the difference between the two
sets of observations. First, the MCC velocities should
be more representative of the average over a subwindow,
while the altimeter velocities are derived from a nar-
rower strip along the ground track. Presumably with
smaller spatial sampling the altimeter-derived velocities
would be biased faster relative to the MCC velocities.
However, a regression of the MCC and altimetric ve-
locity components, accounting for imprecision in both
measurements methods, indicates no measurable scale
bias between the two types of velocity observations.
Second, the MCC velocities probably contain some
ageostrophic flows that have survived the composite
process, as well as geostrophic flows. Ekman velocities,
for example, may persist over the composite period and
contribute to a randomly oriented disagreement with the
geostrophic velocities from the altimeter.

Correspondence between the altimetric and MCC ve-
locity components was also gauged by calculating cor-
relation coefficients. The correlation coefficient between
the lower-threshold composites and the altimeter-de-
rived velocities is 0.49. The higher-threshold composites
are more highly correlated at 0.63. The values are in
the range of correlation coefficients calculated by Ohl-
mann et al. (2001) between drifting buoy velocities and
altimeter velocities in the Gulf of Mexico for a variety
of water depths and filtering of the altimeter data. In
particular, the correlation coefficients from the higher-
threshold composites are in the range of the highest
correlation coefficients found by Ohlmann et al. (2001).

c. Eddy statistics

Variance ellipses were calculated from the 6 yr of
MCC velocities by removing the mean velocity and find-
ing the principal axes of the variances in 60-km bins
(Fig. 11a). As seen in the covariance plots in Fig. 8,
squaring the velocity preserves the noise as well as the
signal variance. To correct for this effect, the noise es-
timated earlier was subtracted from the squared veloc-
ities. Ellipses with significant anisotropy are shaded.
The lower-threshold composites are used. However,
once the noise variances are removed, the eddy kinetic
energies from the high- and low-threshold composites
are nearly identical.

Eddy kinetic energy peaks about 300 km away from
the coast with highest magnitudes slightly over 0.1 m2

s22. The most energetic region corresponds to where
the current separates from the coast and the region of
intense eddy formation slightly south of it (Nilsson and
Cresswell 1981). Energies of at least half that value
extend northward to 258S and to the southeast corner
of Australia. South of the Australian continent and east
of Tasmania kinetic energy is nearly an order of mag-
nitude less than in the separation region to the north.

Velocity fluctuations nearest the coast are aligned par-
allel with the coast, especially in the northern region
where the current consistently follows the coastline. In
the separation region near 328S, fluctuations are directed
more offshore. South of this region the variance ellipses
reflect the pattern of the eddies propagating down the
coastline. Closer to the coast fluctuations are alongshore,
while farther out the velocities are directed offshore. At
a distance of about 200 km (the eddy diameter scale)
the ellipses turn to a more alongshore direction again.

Variance ellipses were also derived from geostrophic
velocities calculated from the T/P altimeter sea surface
heights (Fig. 11b) at locations where ascending and de-
scending altimeter tracks cross one another. After de-
riving velocities from sea surface heights in the manner
previously described, velocities from each track were
linearly interpolated to a common time base, and the
full velocity vectors determined from the two across-
track velocity components. A velocity variance of 0.01
m2 s22 was subtracted to account for uncertainty in de-
riving full velocity from the two components. Uncer-
tainities in the full velocity due to temporal interpolation
were not estimated. Ellipses with values smaller than
the noise estimate are not plotted.

Eddy kinetic energies derived from the altimeter mea-
surements are also higher in the vicinity of the sepa-
ration region and directly south of it. The magnitudes
of the highest energies are not significantly different
from the highest magnitudes derived from the MCC
velocities. The altimeter-derived energies decrease
slightly more rapidly away from the energetic region
than the MCC velocities indicate. In particular, no sig-
nificant energy is measurable at crossover points in the
southwestern corner of the region. Variance ellipses at
the crossover points closest to the coast are aligned pre-
dominantly in the along-shelf direction (Fig. 11b), but
farther east of where the MCC ellipses are aligned par-
allel to the coast.

Variance ellipses were also derived from drifting buoy
velocities from the World Ocean Circulation Experiment
Surface Velocity Programme (Fig. 11c). Drifter veloc-
ities were binned in 28 3 28 squares and eddy kinetic
energy calculated in bins with 10 or more degrees of
freedom. Unfortunately for our purposes, the drifter dis-
tribution is biased toward regions of slower flows both
because of the deployment locations of the drifters and
because they remain longer in regions of slower flow.
No noise estimates were subtracted from the kinetic
energies because none could be reliably estimated.

Although resolution is limited, the drifters do show
the same type of distribution seen in the MCC and al-
timeter-derived energies. Higher energies are found in
the region where the current turns from the coast, with
perhaps higher energies extending to the edge of the
domain than the other measurements suggest. Given the
degrees of freedom in the drifter dataset, few of the
differences between these values and those of the altim-
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FIG. 11. Variance ellipses calculated from (a) the MCC velocities from the low threshold composites, (b) geostrophic velocity estimates
at the crossover points of the TOPEX/Poseiden altimeter, and (c) drifting buoy data binned in 28 bins. Shading indicates ellipses with
significant anisotropy. Scale ellipses have major axes corresponding to 0.05, 0.1, and 0.2 m2 s22 with minor axes half those values.

eter and MCC velocities are significant, nor can signif-
icant anisotropy in the ellipses be discerned.

5. Summary discussion

The 7-yr time series of velocities we have extracted
from thermal imagery is orders of magnitude longer than
others previously derived using the MCC technique. The
volume of observations allows a statistical evaluation
of the method performance. On average, 8000 vectors
per month are obtained in the East Australian region
between 1993 and 1998, despite a climatological cloud
cover of about 70%. Higher numbers of velocities were
extracted in regions of lower cloud cover and persistent
thermal gradients with some seasonal and interannual
variation.

The precision of the method, estimated from lagged
covariances of the composite velocities, is about 0.2 m
s21 rms decreasing to about 0.08 m s21 rms with more
restrictive compositing, or about 0.28 and 0.12 m s21

rms in the magnitudes of the velocity. Our empirical
estimates of method precision are slightly higher than
the range of 0.10–0.25 m s21 rms noise that Tokmakian
et al. (1990) find in MCC velocity magnitudes by the
advection of an AVHRR thermal image with surface
velocities from an ocean model. An increase in noise
is not surprising since temperature features are in reality
evolving as well as being carried by a current. The em-
pirical estimates do suggest, however, for only slightly

more restrictive compositing the noise in the method
can be halved.

A comparison of the MCC velocities to other velocity
estimates in the region gives a sense of how the ad-
vection of thermal features corresponds to other ap-
proximations of surface currents. The 6-yr mean MCC
velocities show the same flow direction as the mean
derived from a dynamic height climatology. Velocity
magnitudes correspond most closely in the northern part
of the domain where sampling in both distributions is
denser and the current less variable.

The rms differences between time-dependent MCC
velocities and geostrophic velocities derived from al-
timeter sea surface heights are greater than the estimates
of precision in each method. There appears to be no
scale bias between the two types of observations, in
contrast to the bias of 30%–50% that Kelly and Strub
(1992) report from their comparison of MCC velocities
with those measured by drifter and ADCP. We suggest
some of the differences in our comparison may arise
from ageostrophic velocities in the MCC measurements.
Consistent with this explanation, the correlation coef-
ficients between the velocities lie in the range of those
derived by Ohlmann et al. (2001) in comparisons be-
tween drifting buoy velocities and velocities derived
from altimetry in the Gulf of Mexico.

Variance ellipses derived from the MCC, altimetric,
and drifting buoy velocities all show higher kinetic en-
ergy of similar magnitudes in the separation region, al-



1676 VOLUME 19J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

though the some of the orientations of the variance el-
lipses differ. The comparisons do illustrate the advan-
tages of the spatial and temporal sampling of the MCC
velocities. The MCC velocities are often more dense
than the altimeter measurements and more widespread
than drifting buoy deployments. The relative ease with
which velocities can be extracted from thermal imagery,
in comparison with other observational techniques, sug-
gests that this method can be used to augment other
observations in regions where it is feasible to do so.

In addition to use in real-time analyses, the technique
can be applied to existing archives of infrared satellite
data to estimate currents almost a decade before alti-
metric measurements. The number of regions where the
method can be applied should also expand once global
coverage of high-resolution thermal data is routinely
available.
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